Acta Prataculturae Sinica ›› 2015, Vol. 24 ›› Issue (6): 188-203.DOI: 10.11686/cyxb2014316
Previous Articles Next Articles
YANG Gao-Wen1, 2, LIU Nan1, YANG Xin1, ZHANG Ying-Jun1, *
Received:
2014-07-21
Online:
2015-06-20
Published:
2015-06-20
YANG Gao-Wen, LIU Nan, YANG Xin, ZHANG Ying-Jun. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community[J]. Acta Prataculturae Sinica, 2015, 24(6): 188-203.
[1] Smith S E, Read D J. Mycorrhizal Symbiosis (3rd edition)[M]. New York: Elsevier, 2008. [2] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. [3] Stevens C J, Dise N B, Mountford J O, et al . Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303: 1876-1879. [4] Suding K N, Collins S L, Gough L, et al . Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4387-4392. [5] Bai Y F, Wu J G, Clark C M, et al . Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. [6] Yang H, Jiang L, Li L, et al . Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619-626. [7] He D, Li X L, Wan L Q, et al . Influence of urea application on aboveground biomass and important value of the species in the degraded grassland. Acta Prataculturae Sinica, 2009, 18(3): 154-158. [8] Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320(1-2): 37-77. [9] van der Heijden M G A, Klironomos J N, Ursic M, et al . Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72. [10] Vogelsang K M, Reynolds H L, Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172(3): 554-562. [11] Wagg C, Jansa J, Schmid B, et al . Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14(10): 1001-1009. [12] Johnson N C, Angelard C, Sanders I R, et al . Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 2013, 16(Suppl 1): 140-153. [13] Lin S S, Sun X W, Wang X J, et al . Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325. [14] Hetrick B A D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380. [15] Wilson G W T, Hartnett D C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany, 1998, 85(12): 1732-1738. [16] Hartnett D C, Wilson G W T. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology, 1999, 80(4): 1187-1195. [17] Bai Y F, Han X G, Wu J G, et al . Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. [18] Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441: 629-632. [19] Kiers E T, Duhamel M, Beesetty Y, et al . Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. [20] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(6): 296-310. [21] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991, 136(1): 41-48. [22] Zhang F S, Shen J B, Feng G. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2009. [23] Cavagnaro T R, Dickson S, Smith F A. Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil, 2010, 329(1-2): 307-313. [24] Zhu Y G, Smith F A, Smith S E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley ( Hordeum vulgare ) cultivars grown in sand culture. Australian Journal of Agricultural Research, 2002, 53(2): 211-216. [25] Marschner H, Dell B. Nutrient uptake in mycorrhizai symbiosis. Plant and Soil, 1994, 159(1): 89-102. [26] Yao Q, Li X L, Feng G, et al . Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil, 2001, 230(2): 279-285. [27] Li X L, George E, Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 1991, 119(3): 397-404. [28] Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions. In: Lichtfouse E, Hamelin M, Navarrete M, et al . Sustainable Agriculture Volume 2[M]. Netherlands: Springer, 2011: 907-930. [29] Egerton-Warburton L M, Querejeta J I, Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 2007, 58(6): 1473-1483. [30] Birhane E, Sterck F, Fetene M, et al . Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169(4): 895-904. [31] Querejeta J, Egerton-Warburton L, Prieto I, et al . Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant and Soil, 2012, 355(1): 63-73. [32] Porcel R, Aroca R, Ruiz-Lozano J. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012, 32(1): 181-200. [33] Giri B, Mukerji K. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 2004, 14(5): 307-312. [34] Diouf D, Duponnois R, Ba A T, et al . Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Functional Plant Biology, 2005, 32(12): 1143-1152. [35] Estrada B, Barea J, Aroca R, et al . A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366(1-2): 333-349. [36] Rabie G H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia, 1998, 141(3): 159-166. [37] Babikova Z, Johnson D, Bruce T, et al . Underground allies: how and why do mycelial networks help plants defend themselves. Bioessays, 2014, 36(1): 21-26. [38] Jung S, Martinez-Medina A, Lopez-Raez J, et al . Mycorrhiza-Induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 651-664. [39] Vos C, Claerhout S, Mkandawire R, et al . Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 2012, 354(1): 335-345. [40] Li Y J, Liu Z L, Hou H Y, et al . Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum, 2013, 35(12): 3465-3475. [41] Babikova Z, Gilbert L, Bruce T J A, et al . Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 2013, 16(7): 835-843. [42] Duhamel M, Pel R, Ooms A, et al . Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae. Ecology, 2013, 94(9): 2019-2029. [43] Elsharkawy M, Shimizu M, Takahashi H, et al . The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant and Soil, 2012, 361(1-2): 397-409. [44] Jeffries P, Gianinazzi S, Perotto S, et al . The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37(1): 1-16. [45] Wu Q S, Yuan F Y, Fei Y J, et al . Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover. Acta Prataculturae Sinica, 2014, 23(4): 269-275. [46] Bever J D, Schultz P A, Pringle A, et al . Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience, 2001, 51(11): 923-931. [47] Chaudhary V B, Bowker M A, O’Dell T E, et al . Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications, 2009, 19(1): 110-122. [48] Wilson G W T, Rice C W, Rillig M C, et al . Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. [49] van der Heijden M G A. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology, 2010, 91(4): 1163-1171. [50] Hetrick B A D, Wilson G W T, Cox T S. Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Canadian Journal of Botany, 1992, 70(10): 2032-2040. [51] Plenchette C, Fortin J A, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil, 1983, 70(2): 211-217. [52] Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 2003, 49(5): 655-668. [53] Grman E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology, 2012, 93(4): 711-718. [54] Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 1990, 115(1): 77-83. [55] Reinhart K O, Wilson G W T, Rinella M J. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecology Letters, 2012, 15(7): 689-695. [56] Hoeksema J D, Chaudhary V B, Gehring C A, et al . A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. [57] Perez M, Urcelay C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza, 2009, 19(8): 517-523. [58] Koide R. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia, 1991, 85(3): 389-395. [59] Allsopp N, Stock W D. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia, 1992, 91(2): 281-287. [60] Zhen L N, Yang G W, Yang H J, et al . Arbuscular mycorrhizal fungi affect seedling recruitment: a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant and Soil, 2014, 375(1-2): 127-136. [61] van der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150. [62] van der Heijden M G A. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 2004, 7(4): 293-303. [63] van der Heijden M G A, Boller T, Wiemken A, et al . Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 1998, 79(6): 2082-2091. [64] Pankova H, Munzbergova Z, Rydlova J, et al . The response of Aster Amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. American Journal of Botany, 2011, 98(5): 850-858. [65] Johnson N C, Wilson G W T, Bowker M A, et al . Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093-2098. [66] Borowicz V A. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: a search for pattern. Acta Oecologica, 2013, 52: 1-9. [67] Bennett A E, Bever J D. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology, 2007, 88(1): 210-218. [68] Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054. [69] Grime J P, Mackey J M L, Hillier S H, et al . Floristic diversity in a model system using experimental microcosms. Nature, 1987, 328: 420-422. [70] Pietikainen A, Kytoviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants. Journal of Ecology, 2007, 95(4): 639-647. [71] Johnson N C, Rowland D L, Corkidi L, et al . Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 2003, 84(7): 1895-1908. [72] Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185(3): 631-647. [73] Bonneau L, Huguet S, Wipf D, et al . Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula . New Phytologist, 2013, 199(1): 188-202. [74] Siqueira J O, Saggin-Junior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 2001, 11(5): 245-255. [75] Schroeder M S, Janos D P. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil, 2004, 264(1-2): 335-348. [76] Janos D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza, 2007, 17(2): 75-91. [77] Ryan M H, Small D R, Ash J E. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture, 2000, 40(5): 663-670. [78] Corkidi L, Rowland D L, Johnson N C, et al . Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240(2): 299-310. [79] Grman E, Robinson T M P. Resource availability and imbalance affect plant-mycorrhizal interactions: A field test of three hypotheses. Ecology, 2013, 94(1): 62-71. [80] Johnson N C, Graham J H, Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 1997, 135(4): 575-585. [81] Jacquemyn H, Brys R, Merckx V S F T, et al . Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 2014, 202(2): 616-627. [82] Osanai Y, Bougoure D, Hayden H, et al . Co-occurring grass species differ in their associated microbial community composition in a temperate native grassland. Plant and Soil, 2013, 368(1-2): 419-431. [83] Montesinos-Navarro A, Segarra-Moragues J G, Valiente-Banuet A, et al . Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 2012, 196(3): 835-844. [84] Wagg C, Jansa J, Stadler M, et al . Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313. [85] Danieli-Silva A, Uhlmann A, Vicente-Silva J, et al . How mycorrhizal associations and plant density influence intra- and inter-specific competition in two tropical tree species: Cabralea canjerana (Vell.) Mart. and Lafoensia pacari A.St.-Hil. Plant and Soil, 2010, 330(1-2): 185-193. [86] Francis R, Read D J. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 1984, 307: 53-56. [87] Walder F, Niemann H, Natarajan M, et al . Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. [88] Schroeder-Moreno M S, Janos D P. Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany, 2008, 86(10): 1180-1193. [89] Genney D R, Hartley S E, Alexander I J. Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytologist, 2001, 152(2): 355-363. [90] Fitter A H. Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia, 1991, 47(4): 350-355. [91] Xu L M. Mediation of Arbuscular Mycorrhizal Fungi on Plant Density Effects under Different Water Levels:Phenomena and Mechanism[D]. Hangzhou: Zhejiang University, 2010. [92] Zhang Q. Plant-Plant Interaction and Arbuscular Mycorrhizal Fungi[D]. Hangzhou: Zhejiang University, 2011. [93] Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615. [94] Hetrick B A D, Hartnett D C, Wilson G W T, et al . Effects of mycorrhizae, phosphorus availability, and plant-density on yield relationships among competing tallgrass prairie grasses. Canadian Journal of Botany, 1994, 72(2): 168-176. [95] Zobel M, Moora M. Interspecific competition and arbuscular mycorrhiza: Importance for the coexistence of two calcareous grassland species. Folia Geobotanica, 1995, 30(2): 223-230. [96] Moora M, Zobel M. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 1996, 108(1): 79-84. [97] Klabi R, Hamel C, Schellenberg M P, et al . Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biology and Biochemistry, 2014, 70: 176-182. [98] West H M. Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata . Journal of Ecology, 1996, 84(3): 429-438. [99] Bever J D, Morton J B, Antonovics J, et al . Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 1996, 84(1): 71-82. [100] Hart M M, Reader R J, Klironomos J N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution, 2003, 18(8): 418-423. [101] Vandenkoornhuyse P, Ridgway K P, Watson I J, et al . Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 2003, 12(11): 3085-3095. [102] Robinson D, Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany, 1999, 50: 9-13. [103] Tilman D. Species richness of experimental productivity gradients—how important is colonization limitation. Ecology, 1993, 74(8): 2179-2191. [104] MacArthur R H, Wilson E O. The Theory of Island Biogeography[M]. Princeton: Princeton University Press, 1967. [105] Turnbull L A, Crawley M J, Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos, 2000, 88(2): 225-238. [106] Voets L, de la Providencia I, Fernandez K, et al . Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, 2009, 19(5): 347-356. [107] Simard S W, Beiler K J, Bingham M A, et al . Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 2012, 26(1): 39-60. [108] Nakano-Hylander A, Olsson P. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology and Biochemistry, 2007, 39(7): 1450-1458. [109] Janouskova M, Rydlova J, Puschel D, et al . Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza, 2011, 21(7): 641-650. [110] Francis R, Read D J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 1995, 73(S1): 1301-1309. [111] Moora M, Zobel M. Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages. Canadian Journal of Botany, 1998, 76(4): 613-619. [112] Kytoviita M M, Vestberg M, Tuom J. A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology, 2003, 84(4): 898-906. [113] Yang G W. Mechanisms of Mycorrhizal Fungi and Soil Nitrogen and Phosphorus Affecting Community Productivity Changes in the Stipa Steppe[D]. Beijing: China Agricultural University, 2014. [114] Streitwolf-Engel R, van der Heijden M G A, Wiemken A, et al . The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology, 2001, 82(10): 2846-2859. [115] Sudova R, Vosatka M. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant and Soil, 2008, 308(1): 55-67. [116] Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6(5): 388-391. [117] Hiiesalu I, Pärtel M, Davison J, et al . Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. [118] O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154(1): 209-218. [119] van der Heijden M G A, Streitwolf-Engel R, Riedl R, et al . The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172(4): 739-752. [120] Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861. [121] Klironomos J N, McCune J, Hart M, et al . The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 2000, 3(2): 137-141. [122] Collins C D, Foster B L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology, 2009, 90(9): 2567-2576. [123] van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626-2635. [124] Yang G W, Liu N, Lu W J, et al . The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 2014, 102(4): 1072-1082. [125] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO 2 in field studies. New Phytologist, 2004, 164(2): 347-355. [126] Liu Y, Shi G, Mao L, et al . Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535. [127] Reich P B, Knops J, Tilman D, et al . Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. Nature, 2001, 410: 809-812. [128] Reeves F B, Wagner D, Moorman T, et al . Role of endomycorrhizae in revegetation practices in the semi-arid west.1. comparison of incidence of mycorrhizae in severely disturbed vs natural environments. American Journal of Botany, 1979, 66(1): 6-13. [129] Allen M F, Clouse S D, Weinbaum B S, et al . Mycorrhizae and the integration of scales: from molecules to ecosystems. In: Allen M F. Mycorrhizal Functioning[M]. London: Chapman & Hall, 1992: 488-515. [130] Newsham K K, Watkinson A R, West H M, et al . Symbiotic fungi determine plant community structure—changes in a Lichen-Rich community induced by fungicide application. Functional Ecology, 1995, 9(3): 442-447. [131] Allsopp N, Stock W D. Mycorrhizal status of plants growing in the cape floristic region, South-Africa. Bothalia, 1993, 23(1): 91-104. [132] Shi W Q. The effects of arbuscular mycorrhizal fungi on Stipa grandis community in Inner Mongolia grassland. Ecology and Environmental Sciences, 2010, 19(2): 344-349. [133] Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO 2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540. [134] van der Heijden M G A, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 2003, 157(3): 569-578. [135] Zobel M, Moora M, Haukioja E. Plant coexistence in the interactive environment: Arbuscular mycorrhiza should not be out of mind. Oikos, 1997, 78(1): 202-208. [136] Zaller J G, Heigl F, Grabmaier A, et al . Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. Plos One, 2011, 6(12): e29293. [137] Fellbaum C R, Gachomo E W, Beesetty Y, et al . Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2666-2671. [7] 何丹, 李向林, 万里强, 等. 施用尿素当年对退化天然草地物种地上生物量和重要值的影响. 草业学报, 2009, 18(3): 154-158. [13] 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望. 草业学报, 2013, 22(5): 310-325. [22] 张福锁, 申建波, 冯固. 根际生态学—过程与调控[M]. 北京: 中国农业大学, 2009. [45] 吴强盛, 袁芳英, 费永俊, 等. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响. 草业学报, 2014, 23(4): 269-275. [91] 徐黎明. 不同水分状况下丛枝菌根真菌对植物密度效应的调节及机理[D]. 杭州: 浙江大学, 2010. [92] 张倩. 植物相互作用与丛枝菌根真菌[D]. 杭州: 浙江大学, 2011. [113] 杨高文. 菌根真菌和氮磷对针茅草原群落生产力变化的作用机制[D]. 北京: 中国农业大学, 2014. [132] 石伟琦. 丛枝菌根真菌对内蒙古草原大针茅群落的影响. 生态环境学报, 2010, 19(2): 344-349. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||