[1] van der Putten W H, Bardgett R D, Bever J D, et al . Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101(2): 265-276. [2] Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505-511. [3] Brussaard L. Biodiversity and ecosystem functioning in soil. Ambio, 1997, 26(8): 563-570. [4] Wardle D A. Communities and Ecosystems: Linking the Aboveground and Bbelowground Components[M]. New Jersey: Princeton University Press, 2002. [5] Liu G H, Ye Z F, Wu W Z. Culture-dependent and culture-independent approaches to studying soil microbial diversity. Acta Ecologica Sinica, 2012, 32(14): 4421-4433. [6] Du G Z, Li Z Z, Hui C. Protection of alpine meadow resources in Gannan and the research of its optimal utility pattern. Journal of Lanzhou University, 2001, 37(5): 82-87. [7] Dong Z B, Hu G Y, Yan C, et al . Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2010, 59(8): 1731-1740. [8] Wang H, Ren J Z, Yuan H B. A study on the changes of soil physical properties in the desertification process of source regions of the Yellow River using Maqu as an example. Acta Prataculturae Sinica, 2007, 16(1): 30-33. [9] Lu J F, Dong Z B, Hu G Y, et al . Aeolian desertification development and its causes in Maqu County of Gansu Province, China. Journal of Desert Research, 2012, 32(3): 604-609. [10] Chen W Y, Zhang J, Qi D C, et al . Desertification dynamic change trend and quantitative analysis of driving factors of alpine meadow in Maqu County in the First Meander of the Yellow River. Acta Prataculturae Sinica, 2015, 22(3): 11-21. [11] Wei X H, Li S, Yang P, et al . Changes of vegetation and diversity of Alpine Kobresia ( Kobresia pygmaea ) Steppe Meadow in desertification process in northern Tibet Plateau. Journal of Desert Research, 2007, 27(5): 750-757. [12] Bao S D. Agricultural Soil Analysis[M]. Beijing: Chinese Agricultural Press, 1981. [13] Xu G H, Zheng H Y. Manual of Soil Microbial Analysis Method[M]. Beijing: Agricultural Press, 1986. [14] Yao H Y, Huang C Y. Soil Microbial Ecology and Experimental Technology[M]. Beijing: Science Press, 2006: 55-93. [15] Dong Y X. Driving mechanism and status of sandy desertification in the northern Tibet Plateau. Journal of Mountain Science, 2001, 19(5): 385-391. [16] Wei T T, Yang Z W, Li X M, et al . Changes of plant community features during sandy desertification process in Gonghe basin of Qinghai. Ecology and Environmental Sciences, 2011, 20(12): 1788-1793. [17] Li C L, Xu X Y, Jin H X, et al . Community structures and plant diversities in the desertification process of Maqu Alpine Meadow in Gansu. Acta Ecologica Sinica, 2014, 34(14): 3953-3961. [18] Peng Y L, Cai X B, Xue H Y, et al . Study on the variation characteristics of soil microbial biomass in the degraded alpine steppes. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(4): 112-115. [19] Spehn E M, Scherer-Lorenzen M, Schmid B, et al . The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos, 2002, 98(2): 205-218. [20] Schnitzer S A, Klironomos J N, Hillerislambers J, et al . Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 2011, 92(2): 296-303. [21] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310. [22] Wagg C, Jansa J, Schmid B, et al . Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14: 1001-1009. [23] Koch A M, Antunes P M, Klironomos J N. Diversity effects on productivity are stronger within than between trophic groups in the arbuscular mycorrhizal symbiosis. PLoS ONE, 2012, 7: e36950. [24] Hiiesalu I, Pärtel M, Davison J, et al . Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. [25] Liu Y, Shi G, Mao L, et al . Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535. [26] Liu Y, Mao L, Li J, et al . Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2015, 386(1-2): 341-355. [27] Smith S E, Jakobsen I, Gronlund M, et al . Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 2011, 156: 1050-1057. [5] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法: 从培养到非培养. 生态学报, 2012, 32(14): 4421-4433. [6] 杜国祯, 李自珍, 惠苍. 甘南高寒草地资源保护及优化利用模式. 兰州大学学报: 自然科学版, 2001, 37(5): 82-87. [8] 王辉, 任继周, 袁宏波. 黄河源区高寒草地沙化进程中土壤物理性质的变化 (简报)——以玛曲为例. 草业学报, 2007, 16(1): 30-33. [9] 逯军峰, 董治宝, 胡光印, 等. 甘肃省玛曲县土地沙漠化发展及其成因分析. 中国沙漠, 2012, 32(3): 604-609. [10] 陈文业,张瑾,戚登臣,等. 黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析. 草业学报, 2015, 22(3): 11-21. [11] 魏兴琥, 李森, 杨萍, 等. 藏北高山嵩草草甸植被和多样性在沙漠化过程中的变化. 中国沙漠, 2007, 27(5): 750-757. [12] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社,1981. [13] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京: 农业出版社,1986. [14] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社,2006: 55-93. [15] 董玉祥. 藏北高原土地沙漠化现状及其驱动机制. 山地学报, 2001, 19(5): 385-391. [16] 魏婷婷, 杨占武, 李秀梅, 等. 共和盆地沙质荒漠化过程植被群落特征变化. 生态环境学报, 2011, 20(12): 1788-1793. [17] 李昌龙, 徐先英, 金红喜, 等. 玛曲高寒草甸沙化过程中群落结构与植物多样性. 生态学报, 2014, 34(14): 3953-3961. [18] 彭岳林, 蔡晓布, 薛会英, 等. 退化高寒草原土壤微生物变化特性研究. 西北农业学报, 2007,16(4): 112-115. |