[1] Diao Q Y, Yang Z M, Chen J F, et al . Degradation in rumen and feeding value of pelletized forage and fodder for beef cattles. Pratacultural Science, 2011, 18(6): 43-47. [2] Gao J, Ding L Y, Chen L M. Comparison on the fattening effects of TMR pellet feed in different species of growing cattle. Acta Ecologae Animalis Domastici, 2013, 34(5): 71-74. [3] Chen L, Zhang L Q, Hong L. Analysis of nutritional composition for feeding Caragana intermedia pellets and the test for the fattening effect on beef cattle. Heilongjiang Animal Science and Veterinary Medicine, 2014, 11: 95-98. [4] Hein M, Grings E, Roffler R. Evaluation of a pellet formulated to replace whole cotton seed in the diet of dairy cows in early lactation. Journal of Dairy Science, 1990, 3(9): 2469-2472. [5] Marston S P, Clark G W, Anderson G W, et al . Maximizing profit on New England organic dairy farms: An economic comparison of 4 total mixed rations for organic Holsteins and Jerseys. Journal of Dairy Science, 2011, 94(6): 3184-3201. [6] Lai J T, Li N, Ma S C, et al . The effects of concentrate and forage mixed pellet feed on the apparent digestibility of fiber and protein of dairy cows. Chinese Journal of animal Science, 2007, 13(1): 35-36. [7] Frikha M, Safaa H M, Jimenez-moreno E, et al . Influence of energy concentration and feed form of the diet on growth performance and digestive traits of brown egg-laying pullets from 1 to 120 days of age. Animal Feed Science and Technology, 2009, 153(3): 292-302. [8] Abdollahi M R, Ravindran V, Svihus B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology, 2013, 179(1): 1-23. [9] Marston S P, Clark G W, Anderson G W, et al . Effect of pelleting temperature and probiotic supplementation on growth performance and immune function of broilers fed maize/soy-based diets. Animal Feed Science and Technology, 2013, 180(1): 55-63. [10] Yu A B, Zhuang T, Zhang J G. The effects of different cNFC/cNDF ratio on the degradation rate and fermentation in rumen of weaned calves. China Feed, 2012, (14): 22-26. [11] Xu J, Hou Y J, Yang H B. Effect of forage sources on rumen fermentation characteristics, performance, and microbial protein synthesis in midlactation cows. Asian-Australasian Journal of Animal Science, 2014, 27(5): 667-673. [12] Weatherburn M W. Phenol-hypochrolite reaction for determination of ammonia. Analytical Chemistry,1967, 39: 971-974. [13] Hall M B, Herejk C. Differences in yields of microbial crude protein from in vitro fermentation of carbohydrates. Journal of Dairy Science, 2001, 84: 2486-2493. [14] Kristensen N B. Quantification of whole blood short-chain fatty acids by gas chromatographic determination of plasma 2-chloroethyl derivatives and correction for dilution space in erythrocytes. Acta Agriculture Acandinavica Section A-Animal Science, 2000, 50: 231-236. [15] Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. Fems Microbiology Ecology, 2006, 58: 572-582. [16] Livak K I, Schmittgen T D. Analysis of relative gene expression data using real-time PCR quantitative PCR and the 2-method. Methods, 2001, 25: 402-428. [17] Wang R F, Cao W W, Cerniglia C E. PCR detection of Ruminococcus spp. in human and animal faecal samples. Molecular and Cellular Probes, 1997, 11: 259-265. [18] Stevenson D M, Weimer P J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2007, 75: 165-174. [19] Ehsan K, Li S, Plaizier J C, et al . Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 75: 7115-7124. [20] Church K. A stochastic parts programme and noun phase parser for unrestricited text. Second conference. Applied Natural Language Processing, 1988, 23: 214-216. [21] Moscardini S, Wright T C, Luimes P H, et al . Effects of rumenundegradable protein and feed intake on purine derivative and urea nitrogen: Comparison with predictions from the cornell net carbohydrate and protein system. Journal of Dairy Science, 1998, 81: 2421-2429. [22] Meng Q X, Kerley M S. Protein fermentation by ruminal microorganisms and microbial growth efficiency as affected by dilution rate in continuous culture. Journal of Agricultural Science, 1998, 31: 1-4. [23] Thomson D J, Beever D E, Latham M J, et al . The effect of inclusion of mineral salts in the diet on dilution rate, the pattern of rumen fermentation and the composition of rumen microflora. Journal of Agricultural Science, 1978, 91: 1-7. [24] Lu L, Xia Z G, Meng Q X. Effects of concentrate and dilution rate on rumen microbial and fermentation. Feed Research, 2007, 4: 52-55. [25] Anantasook N, Wanapat M, Cherdthong A, et al . Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Journal of Animal Science, 2013, 26(6): 820-826. [26] Srinivas B, Gupta B. Rumen fermentation, bacterial and total volatile fatty acid (TVFA) production rates in cattle fed on urea-molasses-mineral block licks supplemen. Animal Feed Science and Technology, 1997, 65(1): 275-286. [27] Salter D N, Daneshvar K, Smith R H. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein and urea containing diets. The British Journal of Nutrition, 1979, 41(1): 197-209. [28] Michalski J, Kowalczyk J, Czauderna M, et al . Incorporation of endogenous urea nitrogen into the amino acids of bacterial protein in the rumen of goats fed diets with various protein levels. Journal of Animal Science, 2013, 516: 49. [29] Agle M, Hristov A, Zaman S, et al . Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science, 2010, 93(9): 4211-4222. [30] Van H M. Challenging the retinal for altering VFA ratios in growing ruminates. Feed Mix, 1996, 4(1): 8-12. [31] Cantalapiedra H G, Yanez R D, Martin G A, et al . Effects of forage: concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Journal of Animal Science, 2009, 87(2): 622-631. [32] Cerrillo M, Russell J, Crump M. The effects of hay maturity and forage to concentrate ratio on digestion kinetics in goats. Small Ruminant Research, 1999, 32(1): 51-60. [33] Wang S P, Wang W J, Wang J Q, et al . Effects of dietary concentrate-to-forage ratio on rumen fermentation and performance of dairy cows. Journal of Northwest A & F University, 2007, 35(6): 44-50. [34] Grubb J A, Dehority B A. Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep. Applied Environmental Microbiology, 1975, 30: 404-412. [35] Leedle J A Z, Bryant M P. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low or high forage diets. Applied and Environmental Microbiology, 1982, 44(2): 402-412. [36] Dehority B A, Tirabasso P A. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. Journal of Animal Science, 1998, 76: 2905-2911. [37] Mackie R I, Gilchrist M C. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. Journal of Agricultural Science, 1978, 90: 241-254. [38] Varel V H, Dehority B A. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Applied and Environmental Microbiology, 1989, 55: 148-153. [39] Sun Y Z, Mao S Y, Yao W, et al . The dynamics of microorganism populations and fermentation characters of co-cultures of rumen fungi and cellulolytic bacteria on different substrates. Acta Microbiologica Sinica, 2006, 46(3): 422-426. [40] Feng Y L. Ruminant Nutrition[M]. Beijing: Science Press, 2004: 2-10. [41] Williams A G, Joblin K N, Fonty G. Interactions between the Rumen Chytrid Fungi and other Microorganisms[M]. New York: Marcel Dekker, 1995. [1] 刁其玉, 杨茁萌, 陈荆芬, 等.草颗粒饲料在牛瘤胃内的降解与饲养价值. 草业科学, 2001, 18(6): 43-47. [2] 高健, 丁洛阳, 陈连民. 颗粒饲料对不同品种生长期牛育肥效果的比较研究. 家畜生态学报, 2013, 34 (5): 71-74. [3] 陈亮, 张凌青, 洪龙. 饲喂柠条颗粒饲料营养成分分析及对肉牛育肥效果试验.黑龙江畜牧兽医, 2014, 11: 95-98. [6] 赖景涛, 李宁, 马松成, 等. 精粗配合颗粒饲料对奶牛纤维性物质和蛋白质表观消化率的影响. 中国畜牧杂志, 2007, 13(1): 35-36. [10] 禹爱兵, 庄涛, 张建刚. 不同cNFC/cNDF日粮在断奶犊牛瘤胃内的降解规律及对瘤胃发酵参数的影响.中国饲料, 2012, (14): 22-26. [24] 鲁琳, 夏兆刚, 孟庆翔. 精料与稀释率对瘤胃发酵与微生物蛋白的影响. 饲料研究, 2007, 4: 52-55. [33] 汪水平, 王文娟, 王加启, 等. 日粮精粗比对奶牛瘤胃发酵及泌乳性能的影响. 西北农林科技大学学报, 2007, 35(6): 44-50. [39] 孙云章, 毛胜勇, 姚文, 等. 不同精粗比底物下瘤胃真菌和纤维降解细菌共培养发酵特性及菌群变化.微生物学报, 2006, 46(3): 422-426. [40] 冯仰廉. 反刍动物营养学[M]. 北京: 科学出版社, 2004: 2-10. |