[1] He J S, Wang Z Q, Fang J Y. Underground ecology under the global change: Problems and prospects. Chinese Science Bulletin, 2004, 49(13): 1226-1233. [2] Clark F E, Pawl E A.The microflora of grassland. Advances in Agronomy, 1970, (22): 375-435. [3] Smith J L, Paul E A. The significance of soil microbial biomass estimations. In: Bollag J M, Stotzky G. Soil Biochemistry[M]. New York: Marcel Dekker, 1990: 357-398. [4] Clark F E, Pawl E A. The micro flora of grassland. Advance of Agronomy, 1970, 22: 375-435. [5] Coleman D C, Whitman W B. Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 2005, 49: 479-497. [6] Yang C D, Long R J, Chen X R. Advanced research in soil microbial functional groups. Chinese Journal of Soil Science, 2008, 39(2): 421-424. [7] Donald R Z, Willame H, David C W. Plant diversity, soil microbial communities, and ecosystem function: Are there any links. Ecology, 2003, 84(8): 2042-2050. [8] Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soil, 1996, 20: 261-264. [9] Nowak J, Nowak D, Chevallier P. Analysis of composite structure and primordial wood remains in petrified wood. Applied Spectroscopy, 2007, 61(8): 889-895. [10] Karboune S, Geraert P A, Kermasha S. Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillium funiculosum . Journal of Agriculture Food Chemistry, 2008, 56(3): 903-909. [11] Casey H, Alexander L, Maren N, et al . A constant flux of diverse thermophilic bacteria into the cold arctic seabed. Science, 2009, 325: 1541-1544. [12] Diaz Ravina M, Acea M J. Seasonal changes in microbial biomass and nutrient flush in forest soils. Biology and Fertility of Soils, 1995, 19: 220-226. [13] Grayston S J, Wang S, Campbell C D, et al . Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biochemistry, 1998, 30: 369-378. [14] Stephan A, Meyer A H, Schmid B. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 2000, 22: 988-998. [15] Yao T, Ma L P, Zhang D G. Research progress on microbiological ecology of rangeland in China. Pratacultural Science, 2005, 22(11): 1-7. [16] Li F R, Zhao W Z, Liu J L, et al . Degraded vegetation and wind erosion influence soil carbon, nitrogen and phosphorus accumulation in sandy grasslands. Plant and Soil, 2009, 317(1/2): 79-92. [17] Sun W Y, Shao Q Q, Liu J Y, et al . The variation characteristics of soil organic carbon of typical alpine slope grasslands and its influencing factors in the “Three-River Headwaters” region. Journal of Natural Resources, 2011, 26(12): 2072-2087. [18] Wang J B, Huang M, Lin X H. Review on carbon budget of the grassland ecosystems on the Qinghai-Tibet Plateau. Progress in Geography, 2012, 31(1): 123-128. [19] Wang C T, Long R J, Wang Q L, et al . Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the Headwater Region of Three Rivers in China. China Journal of Appllied Environment Biology, 2008, 14(2): 225-230. [20] Feng R Z, Zhou W H, Long R J, et al . Characteristics of soil physical, chemical and biological properties on degraded alpine meadows in the Headwater Areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Chinese Journal of Soil Science, 2010, 41(2): 263-269. [21] Geng Y H, Zhang T Y, Wang H F. A preliminary report on soil dematiaceous hyphomycetes from the three river gorge regions in eastern Tibet. Mycosystema, 2008, 27(1): 39-47. [22] Li Z H, Luo Y M, Teng Y. Soil and Environmental Microbiology Research Method[M]. Beijing: Science Press, 2008: 90-114. [23] Lu G X, Chen X R, Yang C D, et al . Identification of cellulose decomposing fungi strain F 1 and decomposition activity to two kinds of lawn grass litter. Acta Prataculturae Sinica, 2011, 20(6): 170-179. [24] Lloyd H, Zar J H, Karr J R. On the calculation of information-theoretical measures of diversity. The American Midland Naturalist, 1968, 79(2): 257-272. [25] Pielou E C. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 1966, 13: 131-144. [26] Levins R. Evolution in Changing Environments[M]. Princeton, N J: Princeton University Press, 1968. [27] Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 1901, 37: 547-579. [28] Tang Q Y, Feng M G. Practical Statistical Analysis and DPS Data Processing System[M]. Beijing: Science Press, 2002. [29] Pang X F, You M S. Insect Community Ecology[M]. Beijing: China Agriculture Press, 1996: 1-147. [30] Reichle D E. The role of siol invertebrates in nutrient cycling. In: Lohm U T, Presson. Soil Organism of Ecosystems[M]. Stockholm: Ecology Bulletin, 1977: 145-156. [31] Buée M, Reich M, Murat C, et al . 454-pyrosequencing analyses of forest soils reveals unexpectedly high fungal diversity. New Phytologist, 2009, 184: 449-456. [32] Anderson J P E, Domsch K H. Physiological method for quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry, 1978, 10: 215-221. [33] Jenkinson D S, Ladd J N. Microbial biomass in soil:Measurement and turnover. In: Paul E A. Soil Biochemistry[M]. New York: Marcel Dekker, 1981: 415-471. [34] Dodd J C, Boddington C L, Rodriguez A, et al . Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil, 2000, 226: 131-151. [35] Xiao H L, Zheng X J. Effects of plant diversity on soil microbes. Soil and Environmental Sciences, 2001, 10(3): 238-241. [36] Liu Z W, Duan E J, Gao W J, et al . Effects of leaf litter replacement on soil biological and chemical characteristics in main artificial forests in Qinling Mountains. Chinese Journal of Applied Ecology, 2008, 19(4): 704-710. [37] Pan H Q, Zhang T Y, Huang Y H, et al . Diversity and niche of soil moniliaceous hyphomycetes in Taibai Mountain. Chinese Journal of Applied Ecology, 2009, 20(2): 363-369. [38] Yao X M, Lv G Z, Yang H, et al . Studies of fungal flora in forest soil of Changbai mountains. Journal of Fungal Research, 2007, 5(1): 43-46. [39] Zhang J Z, Chen X R, Yang C D, et al . A study on the diversity of soil cultured fungi in the alpine grassland of Eastern Qilian Mountains. Acta Prataculturae Sinica, 2010, 19(2): 124-132. [40] Ding L L, Qi B, Shang Z H, et al . Dynamics of different soil microbial physiological groups and their relationship to soil conditions under sub-alpine grasslands vegetation in the eastern-Qilian mountain. Acta Prataculturae Sinica, 2007, 16(2): 9-18. [41] Costa R, Gltz M, Mrotzek N, et al . Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 2006, 56(2): 236-249. [42] Daniel G F, Nilsson T, Singh A P. Degradation of lignocellulosics by unique tunnel-forming bacteria. Canadian Journal of Microbiology, 1987, 33: 943-948. [43] Hansen R A. Red oak litter promotes amicroarthropod functional group that accelerates its decomposition. Plant and Soil, 1999, 209: 37-45. [44] Wardle D A, Bardgett R D, Klironomos J N, et al . Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633. [45] Rong L, Li X W, Zhu T H, et al . Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 2009, 18(4): 117-124. [46] Xia B C, Zhou J Z, Tiedje J M. Effect of vegetation on structure of soil microbial community. Chinese Journal of Applied Ecology, 1998, 9(3): 296-300. [47] Hortan T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 2001, 10: 1855-1871. [48] Loranger-Merciris G, Barthes L, Gastine A, et al . Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology & Biochemistry, 2006, 38: 2336-2343. [49] He X Y, Wang K L, Yu Y Z, et al . There sponses of soil microbial taxonomic diversity on vegetation communities and seasons in karst area. Acta Ecologica Sinica, 2009, 29(4): 1763-1769. [50] Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil:Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 2004, 42: 243-270. [51] Xu G H, Li Z G. Microbial Ecology[M]. Nanjing: Southeast University Press, 1991: 104-111. [52] Rong J M, Sun B. Effects of climate conditions and soil type on aerobic cellulose degrading bacteria. Soil, 2012, 44(1): 84-89. [53] Zhang C B, Jin Z X, Li J M. Diversity of bacterial physiological groups and microbial flora in the soil of eight forest types of Tiantai Mountain, Zhejiang. Biodiversity Science, 2001, 9(4): 382-388. [54] Xiao J Y, Zhang L, Xie D T, et al . Study on the relationship between soil microbes and soil fertility in paddy fields of long-tern no-tillage and ridge culture. Journal of Southwest Agricultural University, 2002, 24(1): 82-85. [55] Zhang J E, Liu W G, Hu G. The relationship between quantity index of soil microorganisms and soil fertility of different land use systems. Soil and Environmental Sciences, 2002, 11(2): 140-143. [56] Wang Q L, Cao G M, Wang C T. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow. Chinese Journal of Ecology, 2007, 26(7): 1002-1008. [57] Ma L P, Zhang D G, Yao T. Study on the dynamics of soil cellulose decomposer in alpine grassland under disturbance in Tianzhu. Grassland and Turf, 2005, (1): 29-33. [58] Hibbett D S, Ohman A, Glotzer D, et al . Progress in molecular and morphological taxon discovery in fungi and options for formal classification of environmental sequences. Fungal Biology Review, 2011, 25: 38-47. [59] Waid J S. Does soil biodiversity depend upon metabiotic activity and influences. Applied Soil Ecology, 1999, 13: 151-158. [60] Ritchie N J, Schutter M E, Dick R P, et al . Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Applied and Environmental Microbiology, 2000, 66: 1668-1675. [61] Walter K D, Margaret K B, Courmey S C, et al . Biological properties of soil and subsurface sedimens under abandoned pasture and cropland. Soil Biology & Biochemistry, 1997, 2(7): 837-946. [62] Garcia C, Hemandez T, Costa F. Microbial activity in soil under Mediterranean environmental conditions. Soil Biology & Biochemistry, 1994, 26: 1185-1191. [63] Tiquia S M, Lloyd J, Herms D A, et al . Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Applied Soil Ecology, 2002, 21: 31-48. [64] O’Donnell A G, Seasman M, Macrae A, et al . Plants and fertilizers as drivers of changes in microbial community structure and function in soils. Plant and Soil, 2001, 232: 135-145. [65] Bååth E, Anderson A H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLF-based techniques. Soil Biology & Biochemistry, 2003, 35: 955-963. [66] Rousk J, Bååth E, Brookes P C, et al . Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010, 4: 1340-1351. [67] Zinger L, Shahnavaz B, Baptis F, et al . Microbial diversity in alpine tundra soils correlates with snow cover dynamics. ISME Journal, 2009, 3: 850-859. [68] Deslippe J R, Hartmann M, Simard S W, et al . Long-term warming alters the composition of Arctic soil microbial communities. FEM Microbiology Ecology, 2012, 1: 1-13. [69] Schadt C W, Martin A P, Lipson D A, et al . Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 2003, 301: 1359-1361. [70] Toberman H, Freeman C, Evans C, et al . Summer drought decreases soil fungal diversity and associated phenol xidase activity in upland Calluna heathland soil. FEM Microbiology Ecology, 2008, 66: 426-436. [1] 贺金生, 王政权, 方精云. 全球变化下的地下生态学:问题与展望. 科学通报, 2004, 49(13): 1226-1233. [6] 杨成德, 龙瑞军, 陈秀蓉. 土壤微生物功能群及其研究进展. 土壤通报, 2008, 39(2): 421-424. [15] 姚拓, 马丽萍, 张德罡. 我国草地土壤微生物生态研究进展及浅评. 草业科学, 2005, 22(11): 1-7. [17] 孙文义, 邵全琴, 刘纪远, 等. 三江源典型高寒草地坡面土壤有机碳变化特征及其影响因素. 自然资源学报, 2011, 26(12): 2072-2087. [18] 王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展. 地理科学进展, 2012, 31(1): 123-128. [19] 王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 2008, 14(2): 225-230. [20] 冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究. 土壤通报, 2010, 41(2): 263-269. [22] 李振高, 骆永明, 腾应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008: 90-114. [23] 芦光新, 陈秀蓉, 杨成德, 等. 1株纤维素分解菌的鉴定及对两种草坪草凋落物分解活性的研究. 草业学报, 2011, 20(6): 170-179. [28] 唐启元, 冯明光. 实用统计分析及其DPS数据处理系统[M]. 北京: 科学出版社, 2002. [29] 庞雄飞, 尤民生. 昆虫群落生态学[M]. 北京: 中国农业出版社, 1996: 1-147. [36] 刘增文, 段而军, 高文俊, 等. 秦岭山区人工林地枯落叶客置对土壤生物化学性质的影响. 应用生态学报, 2008, 19(4): 704-710. [37] 潘好芹, 张天宇, 黄悦华, 等. 太白山土壤淡色丝孢真菌群落多样性及生态位. 应用生态学报, 2009, 20(2): 363-369. [38] 姚贤民, 吕国忠, 杨红, 等. 长白山森林土壤真菌区系研究. 菌物研究, 2007, 5(1): 43-46. [39] 张俊忠, 陈秀蓉, 杨成德, 等. 东祁连山高寒草地土壤可培养真菌多样性分析. 草业学报, 2010, 19(2): 124-132. [40] 丁玲玲, 祁彪, 尚占环, 等. 东祁连山亚高山草地土壤微生物功能群数量动态及其与土壤环境关系. 草业学报, 2007, 16(2): 9-18 [45] 荣丽, 李贤伟, 朱天辉, 等. 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 2009, 18(4): 117-124. [46] 夏北成, Zhou J Z, Tiedje J M. 植被对土壤微生物群落结构的影响. 应用生态学报, 1998, 9(3): 296-300. [49] 何寻阳, 王克林, 于一尊, 等. 岩溶区植被和季节对土壤微生物遗传多样性的影响. 生态学报, 2009, 29(4): 1763-1769. [51] 许光辉, 李振高. 微生物生态学[M]. 南京: 东南大学出版社, 1991: 104-111. [52] 荣娟敏, 孙波. 水热条件和土壤类型对纤维素分解菌的影响. 土壤, 2012, 44(1): 84-89. [53] 张崇邦, 金则新, 李均敏. 浙江天台山不同林型土壤环境的微生物区系和细菌生理群的多样性. 生物多样性, 2001, 9(4): 382-388. [54] 肖剑英, 张磊, 谢德体, 等. 长期免耕稻田的土壤微生物与肥力关系研究. 西南农业大学学报, 2002, 24(1): 82-85. [55] 章家恩, 刘文高, 胡刚. 不同土地利用方式下土壤微生物数量与土壤肥力的关系. 土壤与环境, 2002, 11(2): 140-143. [56] 王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征. 生态学杂志, 2007, 26(7): 1002-1008. [57] 马丽萍, 张德罡, 姚拓. 高寒草地不同扰动生境纤维素分解菌数量动态研究. 草原与草坪, 2005, (1): 29-33. |