[1] Zheng Y Q, Guo Y, Fang S J, et al . Constructing pre-core collection of Cynodon dactylon based on phenotypic data. Acta Prataculturae Sinica, 2014, 23(4): 49-60. [2] Sun Z J, Li P Y, Jing Y J, et al . Physiological response of Bermudagrass with different cold-resistance to freezing stress. Journal of Xinjiang Agricultural University, 2011, 34(1): 1-5. [3] Zheng Y H, Liu J X, Chen S Y. The low temperature tolerance variation and its laws of Cynodon dactylon (L.) Pers. in China. Journal of Plant Resources and Environment, 2002, 11(2): 48-52. [4] Xun J P, Liu J X. Primary identification of the low temperature tolerance of Cynodon spp. excellant turfgrass cultivars. Journal of Plant Resources and Environment, 2003, 12(2): 28-32. [5] Fan J B, Ren J, Zhu W X, et al . Antioxidant responses and gene expression in bermudagrass under cold stress. Journal of the American Society for Horticultural Sciences, 2014, 139(6): 399-705. [6] Shi H, Ye T T, Zhong B, et al . Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass ( Cynodon dactylon (L.) Pers.) by exogenous calcium. Journal of Integrative Plant Biology, 2014, 56(11): 1064-1079. [7] Xu S C, Ding H D, Lu R, et al . Study on effects of ABA in antioxidant defense of plant cells. Journal of China Agricultural University, 2008, 13(2): 11-19. [8] Ma Y H, Wang Q X, Chen S J. Research progress on physio-biochemistry and molecular genetics of chilling tolerance in maize. Journal of Maize Sciences, 2013, 21(3): 76-81. [9] Hare P D, Cress W A, Staden J V, et al . The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regulation, 1997, 23(1-2): 1-2. [10] Zhao C J, Kang S J, Wang J H, et al . Study on relations between plant endogenous hormones and cold resistance in wheat. Acta Agricultural Boreall-Sinica, 2000, 15(3): 51-54. [11] Irving R M, Lamphear F O. Regulation of cold hardness in Acer negundo. Plant Physiology, 1968, 43: 9-13. [12] Fan J P, Zhang X, Dong Y B, et al . Relation between carbohydrate content and cold resistance in Lilium. Journal of Northeast Agricultural University, 2007, 38(5): 609-613. [13] Wang Z M. Fructans metabolism in higher plants. Plant Physiology Communication, 2000, 36(1): 71-76. [14] Wang D, Xuan J P, Guo H L, et al . The dynamic changes of cold tolerance in different vegetative organs of three warm season turf grasses during the over wintering. Pratacultural Science, 2010, 27(3): 26-30. [15] Hiscox T D, Israelstam G F. A method for the extraction of chlorophyll from leaf tissues without maceration. Canadian Journal of Botany, 1979, 57(12): 1332-1334. [16] Ma Y N. Quantitative Analysis of 37 Phytohormones in Oryza sativa by High-performance Liquid Chromatography-mass Spectrometry[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. [17] Morvan-Bertrand A, Boucaud J, Le Saos J, et al . Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta, 2001, 213(1): 109-120. [18] Wang Z W. Temporal variation of water-soluble carbohydrate in the rhizome clonal grass Leymus chinese in response to defoliation. Journal of Ecology, 2007, 31(4): 673-679. [19] Wang H C. Structure and Function of Biomembrane and Osmotic Adjustment[M]. Shanghai: Shanghai Science and Technology Press, 1987. [20] Lin D B, Liu Z Q. Effect of cold acclimation and ABA on membrane stability and synthesis of membrane and protein in Citrus. Journal of Nanjing Agricultural University, 1994, 17(1): 1-5. [21] Jian L C. Study on the relationship between biomembrane and cold stress tolerance. Chinese Bulletin of Botany, 1983, (1): 17-23. [22] Li P Y, Sun Z J, Abulaiti, et al . Comparative study on physiological response of cold-resistant and cold sensitive bermudagrasses under low temperature. Chinese Journal of Grassland, 2014, 36(2): 117-120. [23] Lou Y H, Fu J M, Li H Y, et al . Cold tolerance of Cynodon dactylon seedlings from different provenances. Ecological Science, 2011, 30(1): 32-37. [24] Hu S Y, Guo Z F. Physiological responses of turfgrass to abiotic stresses. Acta Prataculturae Sinica, 2003, 12(4): 7-13. [25] Xu S, Li J L, Zhao D H. Research advances in physiological ecological and biochemical characteristics of Festuca arundinacea . Acta Prataculturae Sinica, 2004, 13(1): 58-64. [26] Fu J H, Sun X H, Wang J D, et al . Research progress on quantitative analysis of phytohormes. Chinese Science Bulletin, 2010, (33): 3163-3176. [27] Gibson S I. Plant sugar response pathway part of a complex regulatory web. Plant Physiology, 2000, 124: 1532-1539. [28] Wang L L, Yu X H. Effect of low soil temperature on endogenous GA 3 and IAA content in cucumber. Northern Horticulture, 2004, (3): 44-45. [29] Ou Y L, Hong Y H, Huang L H, et al . On changes of physiology and biochemistry and plant hormones in super rice seedlings by different stress signaling. Research of Agricultural Modernization, 2007, 28(1): 104-106. [30] Pu G B, Zhang K, Zhang L Y, et al . Effect of exogenous ABA on chilling resistance and some physiological index in watermelon seedling. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(1): 133-136. [31] Huang X, Liang Y S, Yang L T, et al . Effects of abscisic acid and its biosynthesis inhibitor on the activities of antioxidant system of sugarcanes treated by cold stress. Journal of South China Agricultural University, 2013, 34(3): 357-361. [32] Sun Z J, Li P Y, Abulaiti, et al . Effect of exogenous ABA on antioxidant enzyme activities in cold-resistant bermudagrass. Arid Zone Research, 2013, 30(3): 497-504. [33] Zhang X Z, Wang K H, Ervin E H. Bermudagrass freezing tolerance associated with abscisic acid metabolism and dehydrin expression during cold acclimation. Journal of American Society for Horticultural Sciences, 2008, 133(4): 542-550. [34] Zhang X Z, Ervin E H, Waltz C, et al . Metabolic changes during cold acclimation and deacclimation in five bermudagrass varieties: II. cytokinin and abscisic acid metabolism. Crop Science, 2011, 51: 847-853. [35] Wang S G. Roles of Cytokinin on stress-resistance and delaying senescence in plants. Chinese Bulletin of Botany, 2000, 17(2): 121-126. [36] Patton A J, Cunningham S M, Yolenec J J, et al . Differences in freeze tolerance of zoysia grasses: II. Carbohydrate and proline accumulation. Crop Science, 2007, 47: 2170-2181. [37] Wang H X, Gu H M, Zhou L, et al . Relation between the frost resistance and the carbohydrate content of leaves growing in different period. Journal of Zhoukou Teachers College, 2003, 20(5): 51-52. [38] Chen G, Kan Z D, Zhang L J. Effect of low temperature on physiological and biochemical characteristics in wheat. Acta Tritical Crops, 1998, 18(3): 42-43. [39] Yang X H, Chen X Y. The effect of fructan on the ability of plants stress-resistance and correlative gene engineering. Acta Agriculturae Boreali-Sinica, 2006, 21(supplement): 6-11. [40] Savitch L V, Harney T, Huner N P A. Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiologia Plantarum, 2000, 108(3): 270-278. [41] Vagujfalvi A, Kerepesi I, Galiba G, et al . Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Science Limerick, 1999, 144(20): 85-92. [42] Espevig T, DaCosta M, Hoffman L, et al . Freezing tolerance and carbohydrate changes of two Agrostis species during cold acclimation. Crop Science, 2011, 51: 1188-1197. [43] Demel R A, Dorrepaal E, Ebskamp M J M, et al . Fructans interact strongly with model membranes. Biochim Biophys Acta, 1998, 1375: 36-42. [44] Gaudet D A, Laroche A, Yoshida M. Low temperature-wheat-fungal interactions: A carbohydrate connection. Plant Physiology, 1999, 106: 437-444. [45] Gibson S I. Plant sugar response pathway part of a complex regulatory web. Plant Physiology, 2000, 124: 1532-1539. [1] 郑轶琦, 郭琰, 房淑娟, 等. 利用表型数据构建狗牙根初级核心种质. 草业学报, 2014, 23(4): 49-60. [2] 孙宗玖, 李培英, 景艳杰, 等. 不同耐寒性狗牙根对冻害胁迫的生理响应. 新疆农业大学学报, 2011, 34(1): 1-5. [3] 郑玉红, 刘建秀, 陈树元. 中国狗牙根[ Cynodon dactylon (L.)Pers.]耐寒性及其变化规律.植物资源与环境学报, 2002, 11(2): 48-52. [4] 宣继萍, 刘建秀. 坪用狗牙根( Cynodon spp.)优良品种(选系)的抗寒性初步鉴定. 植物资源与环境学报, 2003, 12(2): 28-32. [7] 许树成, 丁海东, 鲁锐, 等. ABA在植物细胞抗氧化防护过程中的作用. 中国农业大学学报, 2008,13(2): 11-19. [8] 马延华, 王庆祥, 陈绍江. 玉米耐寒性生理生化机理与分子遗传研究进展. 玉米科学, 2013, 21(3): 76-81. [10] 赵春江, 康书江, 王纪华, 等. 植物内源激含量与不同基因型小麦抗寒性关系的研究. 华化农学报, 2000, 15(3): 51-54. [12] 樊金萍, 张兴, 董云波, 等. 百合碳水化合物含量与抗寒性的关系. 东北农业大学学报, 2007, 38(5): 609-613. [13] 王志敏.高等植物的果聚糖代谢. 植物生理学通讯, 2000, 36(1): 71-76. [14] 王丹, 宣继萍, 郭海林, 等. 暖季型草坪草不同营养器官耐寒力的动态变化. 草业科学, 2010, 27(3): 26-30. [16] 马有宁. 液相串联质谱测定水稻37种内源激素方法的研究[D].北京:中国农业科学院, 2011. [18] 王正文. 根茎克隆植物羊草体内可溶性碳水化合物的时间变异及其对去叶干扰的响应. 植物生态学报, 2007, 31(4): 673-679. [19] 王洪春. 生物膜结构功能和渗透调节[M]. 上海: 上海科学技术出版社, 1987. [20] 林定波, 刘祖祺. 冷训化和ABA对柑橘膜稳定性的影响及膜特异性蛋白质的诱导. 南京农业大学学报, 1994, 17(1): 1-5. [21] 简令成.生物膜与植物抗寒害和抗寒性的关系. 植物学通报, 1983, (1): 17-23. [22] 李培英, 孙宗玖, 阿不来提, 等. 低温下抗寒与寒敏感狗牙根生理响应的比较. 中国草地学报, 2014, 36(2): 117-120. [23] 娄燕宏, 傅金民, 李惠英, 等. 不同地理种群狗牙根耐寒性研究. 生态科学, 2011, 30(1): 32-37. [24] 卢少云, 郭振飞. 草坪草逆境生理研究进展. 草业学报, 2003, 12(4): 7-13. [25] 徐胜, 李建龙, 赵德华. 高羊茅的生理生态及其生化特性研究进展. 草业学报, 2004, 13(1): 58-64. [26] 符继红, 孙晓红, 王吉德, 等. 植物激素定量分析方法研究进展. 科学通报, 2010, (33): 3163-3176. [28] 王丽丽, 于锡宏. 低地温对黄瓜幼苗内源GA 3 和IAA含量的影响.北方园艺, 2004, (3): 44-45. [29] 欧阳琳, 洪亚辉, 黄丽华, 等. 不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究. 农业现代化研究, 2007, 28(1): 104-106. [30] 蒲高斌, 张凯, 张陆阳, 等. 外源ABA对西瓜幼苗抗冷性和某些生理指标的影响. 西北农业学报, 2011, 20(1): 133-136. [31] 黄杏, 梁勇生, 杨丽涛, 等. 低温胁迫下脱落酸及合成抑制剂对甘蔗幼苗抗氧化系统的影响. 华南农业大学学报, 2013, 34(3): 357-361. [32] 孙宗玖, 李培英, 阿不来提, 等. 外源脱落酸对抗寒性狗牙根抗氧化酶活性的影响. 干旱地区研究, 2013, 30(3): 497-504. [35] 王三根. 细胞分裂素在植物抗逆和延衰中的作用. 植物学通报, 2000, 17(2): 121-126. [37] 王红星, 古红梅, 周琳, 等. 不同生长时期叶片中可溶性糖含量与抗寒性关系. 周口师范学院学报, 2003, 20(5): 51-52. [38] 陈贵, 康宗得, 张立军. 低温胁迫对小麦生理生化特性的影响. 麦类作物学报, 1998, 18(3): 42-43. [39] 杨晓红, 陈晓阳. 果聚糖对植物抗逆性的影响及相应基因工程研究进展. 华北农学报, 2006, 21(增刊): 6-11. |