[1] Shomar B, El-Madhoun F, Yahya A. Wastewater reuse for alfalfa production in the Gaza strip. Water Air and Soil Pollution, 2010, 213(1-4): 105-119. [2] Kandelous M M, Kamai T, Vrugt J A, et al . Evaluation of subsurface drip irrigation design and management parameters for alfalfa. Agricultural Water Management, 2012, 109: 81-93. [3] Bloch R, Wechsung F, Hess J, et al . Climate change impacts of legume-grass swards: implications for organic farming in the Federal State of Brandenburg, Germany. Regional Environmental Change, 2015, 15(2): 405-414. [4] Bagavathiannan M V, Gulden R H, Van Acker R C. Occurrence of alfalfa ( Medicago sativa L.) populations along roadsides in southern Manitoba, Canada and their potential role in intraspecific gene flow. Transgenic Research, 2011, 20(2): 397-407. [5] Li Y S, Huang M B. Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agriculture, Ecosystems and Environment, 2008, 124(1-2): 24-32. [6] Liu H X, Li N, Sheng J D, et al . Effects of phosphorus fertilizer on the growth and seed yield of alfalfa. Acta Agrestia Sinica, 2013, 21(3): 571-575. [7] Sun H R, Liu G R, Zhang Y J, et al . Water requirement, water consumption, water requirement rate, water consumption rate and water use efficiency of alfalfa. Pratacultural Science, 2005, 22(12): 24-30. [8] Guo X L, Li W J. Effects of different irrigation methods on alfalfa yield and irrigation water use efficiency. Acta Agrestia Sinica, 2014, 22(5): 1086-1090. [9] Carrion F, Montero J, Tarjuelo J M, et al . Design of sprinkler irrigation subunit of minimum cost with proper operation. Application at corn crop in Spain. Water Resources Management, 2014, 28(14): 5073-5089. [10] Wei X P. Preliminary study on soil solute transport under sprinkler and flood irrigation. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(4): 83-87. [11] Tang L S, Li Y, Zhang J H. Physiological and yield responses of cotton under partial rootzone irrigation. Field Crops Research, 2005, 94(2-3): 214-223. [12] Wang Y S, Liu F L, Jensen L S, et al . Alternative partial root-zone irrigation improves fertilizer-N use efficiency in tomatoes. Irrigation Science, 2013, 31(4): 589-598. [13] Loveys B R, Dry P R, Stoll M, et al . Using plant physiology to improve the water use efficiency of the horticultural crops. Acta Horticulturae, 2000, 537: 187-193. [14] Romero P, Martinez-Cutillas A. The effects of partial root-zone irrigation and regulated deficit irrigation on the vegetative and reproductive development of field-grown Monastrell grapevines. Irrigation Science, 2012, 30(5): 377-396. [15] Yang S M, Li B G, Qi G H, et al . Effects of alternative partial root-zone irrigation on roots activity, stem sap flow and fruit of apple. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8): 73-79. [16] Wang J F, Kang S Z, Li F S, et al . Effects of alternative partial root-zone irrigation on soil microorganism and maize growth. Plant and Soil, 2008, 302(1): 45-52. [17] Mousavi S F, Soltani-Gerdefaramarzi S, Mostafazadeh-Fard B. Effects of partial rootzone drying on yield, yield components, and irrigation water use efficiency of canola ( Brassica napus L.). Paddy and Water Environment, 2010, 8(2): 157-163. [18] Guo Z G, Zhang Z H, Xiao J Y, et al . Root system development ability of several alfalfa cultivars in the hilly and valley regions of Loess Plateau. Chinese Journal of Applied Ecology, 2002, 13(8): 1007-1012. [19] Beis A, Patakas A. Differential physiological and biochemical responses to drought in grapevines subjected to partial root drying and deficit irrigation. European Journal of Agronomy, 2015, 62: 90-97. [20] Ribeiro M S, Netto A T, do Couto T R, et al . Partial rootzone drying in sugarcane ( Saccharum officinarum L.): effects on gas exchange, growth and water use efficiency. Theoretical and Experimental Plant Physiology, 2014, 26(3-4): 251-262. [21] Ghrab M, Ayadi M, Gargouri K, et al . Long-term effects of partial root-zone drying (PRD) on yield, oil composition and quality of olive tree (cv. Chemlali) irrigated with saline water in arid land. Journal of Food Composition and Analysis, 2014, 36(1-2): 90-97. [22] Nunes de Lima R S, Moura de Assis Figueiredo F A M, Martins A O, et al . Partial rootzone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya. Scientia Horticulturae, 2015, 183: 13-22. [23] Garcia Garcia J, Martinez-Cutillas A, Romero P. Financial analysis of wine grape production using regulated deficit irrigation and partial-root zone drying strategies. Irrigation Science, 2012, 30(3): 179-188. [24] Li C X, Chen X F, Wang T L, et al . Effects of controlled alternative irrigation on water redistribution of root zone and yield of maize. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(11): 59-64. [25] Koech R K, Smith R J, Gillies M H. A real time optimisation system for automation of furrow irrigation. Irrigation Science, 2014, 32(4): 319-327. [26] Liu L J, Chen T T, Wang Z Q, et al . Combination of site-specific nitrogen management and alternative wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crops Research, 2013, 154: 226-235. [27] Sampathkumar T, Pandian B J, Rangaswamy M V, et al . Influence of deficit irrigation on growth, yield and yield parameters of cotton-maize cropping sequence. Agricultural Water Management, 2013, 130: 90-102. [28] Yang C H, Chai Q, Huang G B. Root distribution and yield responses of wheat/maize intercropping to alternative irrigation in the arid areas of northwest China. Plant Soil Environment, 2010, 56(6): 253-262. [29] Li C X, Sun J S, Zhou X G, et al . Root morphology characteristics under alternative furrow irrigation. Acta Ecologica Sinica, 2011, 31(14): 3956-3963. [30] Du Y Y, Wang T C, Liu Y Z, et al . Preliminary research on soil-water movement characteristics and ridge parameter alternative furrow irrigation. Journal of Shanxi Agricultural Sciences, 2012, 40(7): 738-741. [31] Lv G H, Kang Y H, Li L, et al . Effect of irrigation methods on root development and profile soil water uptake in winter wheat. Irrigation Science, 2010, 28(5): 387-398. [32] Li Y, Sun H R, Shen Y, et al . The vertical distribution pattern of alfalfa's ( Medicago sativa L.) root biomass. Acta Agrestia Sinica, 2012, 20(5): 793-799. [33] Mingo D M, Theobald J C, Bacon M A, et al . Biomass allocation in tomato ( Lycopersicon esculentum ) plants grown under partial rootzone drying: enhancement of root growth. Functional Plant Biology, 2004, 31(10): 971-978. [34] Tian H Y, Jia Y B, Niu T T, et al . The key players of the primary root growth and development also function in lateral roots in Arabidopsis . Plant Cell Reports, 2014, 33(5): 745-753. [35] Guo Z G, Liu H X, Wang Y R. Effect of cutting on root growth in lucerne. Acta Botanica Boreali-Occident Sinica, 2004, 24(2): 215-220. [36] Zhang X L, Zeng F J, Liu B, et al . Effects of irrigation on root growth and distribution of the seedlings of Alhagi sparsifolia shap. the Taklimakan desert. Journal of Dessert Research, 2011, 31(6): 1459-1466. [37] Kang S Z, Liang Z S, Hu W, et al . Water use efficiency of controlled alternative irrigation on root-divided maize plants. Agricultural Water Management, 1998, 38(1): 69-76. [38] Kou D, Su D R, Wu D, et al . Effects of regulated deficit irrigation on water consumption, hay yield and quality of alfalfa under subsurface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(2): 116-123. [39] Zhang X Y, Liang X S, Zhang Z X, et al . Improving cucumber yield and water use efficiency by different-root grafting under water-deficient condition. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2): 117-124. [40] Chang C, Yin Q, Liu H L. Study on cutting periods and cutting times of alfalfa. Chinese Journal of Grassland, 2013, 35(5): 53-56. [41] Liu D X, Liu G H, Yang Z M. The effect of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa . Acta Prataculturae Sinica, 2015, 24(3): 48-57. [42] 刘焕鲜, 李宁, 盛建东, 等. 磷肥对紫花苜蓿生长和种子产量的影响. 草地学报, 2013, 21(3): 571-575. [43] 孙洪仁, 刘国荣, 张英俊, 等. 紫花苜蓿的需水量,耗水量,需水强度,耗水强度和水分利用效率研究. 草业科学, 2005, 22(12): 24-30. [44] 郭学良, 李卫军. 不同灌溉方式对紫花苜蓿产量及灌溉水利用效率的影响. 草地学报, 2014, 22(5): 1086-1090. [45] 魏新平. 漫灌和喷灌条件下土壤养分运移特征的初步研究. 农业工程学报, 1999, 15(4): 83-87. [46] 杨素苗, 李保国, 齐国辉, 等. 根系分区交替灌溉对苹果根系活力,树干液流和果实的影响. 农业工程学报, 2010, 26(8): 73-79. [47] 郭正刚, 张自和, 肖金玉, 等. 黄土高原丘陵沟壑区紫花苜蓿品种间根系发育能力的初步研究. 应用生态学报, 2002, 13(8): 1007-1012. [48] 李彩霞, 陈晓飞, 王铁良, 等. 控制性交替灌溉对玉米根系层水分再分布与产量的影响. 农业工程学报, 2007, 23(11): 59-64. [49] 李彩霞, 孙景生, 周新国, 等. 隔沟交替灌溉条件下玉米根系形态性状及结构分布. 生态学报, 2011, 31(14): 3956-3963. [50] 杜园园, 王同朝, 刘永忠, 等. 交替灌溉方式土壤水分运移及垄体参数初探. 山西农业科学, 2012, 40(7): 738-741. [51] 李扬, 孙洪仁, 沈月, 等. 紫花苜蓿根系生物量垂直分布规律. 草地学报, 2012, 20(5): 793-799. [52] 郭正刚, 刘慧霞, 王彦荣. 刈割对紫花苜蓿根系生长影响的初步分析. 西北植物学报, 2004, 24(2): 215-220. [53] 张晓蕾, 曾凡江, 刘波, 等. 塔干沙漠南缘骆驼刺幼苗根系生长和分布对不同灌溉量的响应. 中国沙漠, 2011, 31(6): 1459-1466. [54] 寇丹, 苏德荣, 吴迪, 等. 地下调亏滴灌对紫花苜蓿耗水,产量和品质的影响. 农业工程学报, 2014, 30(2): 116-123. [55] 张晓英, 梁新书, 张振贤, 等. 亏缺灌溉下异根嫁接提高黄瓜产量和水分利用效率. 农业工程学报, 2013, 29(2): 117-124. [56] 常春, 尹强, 刘洪林. 苜蓿适宜刈割期及刈割次数的研究. 中国草地学报, 2013, 35(5): 53-56. [57] 刘东霞, 刘贵河, 杨志敏. 种植及收获因子对紫花苜蓿干草产量和茎叶比的影响. 草业学报, 2015, 24(3): 48-57. |