[1] Evelin H, Kapoor R, Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 2009, 104: 1263-1280. [2] Rozema J, Flowers T. Crops for a salinized world. Science, 2008, 322: 1478-1480. [3] Jan A, Osman M B, Amanullah. Response of chickpea to nitrogen sources under salinity stress. Journal of Plant Nutrition, 2013, 36: 1373-1382. [4] Apse M P, Aharon G S, Snedden W A, et al . Salt tolerance conferred by overexpression of a vacuolar Na + /H+ antiporter in Arabidopsis . Science, 1999, 285: 1256-1258. [5] Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6(2): 66-71. [6] Zhu J K. Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 2001, 4(5): 401-406. [7] Prasad P V V, Vu J C V, Boote K J, et al . Enhancement in leaf photosynthesis and upregulation of rubisco in the C 4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Functional Plant Biology, 2009, 36: 761-769. [8] Peng Y Q, Xie T, Zhou F, et al . Response of plant growth and photosynthetic characteristics in Suaeda glauca and Atriplex triangularis seedlings to different concentrations of salt treatmengts. Acta Prataculturae Sinica, 2012, 21(6): 64-74. [9] Kang Y Y, Yang X, Guo S R, et al . Effects of 2,4-epibrassinolide on carbohydrate metabolism and enhancement of tolerance to root-zone hypoxia in cucumber ( Cucumis sativus L.). Scientia Agricultura Sinica, 2011, 44(12): 2495-2503. [10] Ma M, Liu R, Zheng C F, et al . Regulation of exogenous brassinosteroid on growth of salt-stressed canola seedlings and its physiological mechanism. Acta Ecologica Sinica, 2015, 35(6): 1837-1844. [11] Li N, Guo S R, Shu S, et al . Effects of exogenous 2,4-epibrassinolide on leaf morphology and photosynthetic characteristics of tomato seedlings under low light stress. Chinese Journal of Applied Ecology, 2015, 26(3): 847-852. [12] Schlüter U, Köpke D, Altmann T, et al . Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroids-deficient cbb 1 mutant. Plant Cell and Environment, 2002, 25: 783-791. [13] Yu J Q, Huang L F, Hu W H, et al . A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus . Journal of Experimental Botany, 2004, 55: 1135-1143. [14] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. [15] He X L, Chen S F, Wang Z H, et al . Effect of saline water irrigation on sand soil salt and the physiology and growth of Populus euphratica Oliv. Acta Ecologica Sinica, 2012, 32(11): 3449-3459. [16] Kou J T, Shi S L. Effect of 2,4-epibrassinolide on seed germination and seedling growth of Medicago sativa under salt stress. Grassland and Turf, 2015, 35(1): 1-8, 19. [17] Arnon D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris . Plant Physiology, 1949, 24: 1-15. [18] Mao M F, Zhao B B, Yue W. Study on effect of diluted hydrochloric acid extracting metal elements in plant. Journal of Zhejiang Agricultural Sciences, 1985, (2): 29-35. [19] Ji X J, Li C Y, Mao M F. Discussion on pretreatment method of chlorine determination in plant. Journal of Zhejiang Agricultural Sciences, 1997, (2): 89-91. [20] Bao S D. Soil Agrochemical Analysis (The third edition)[M]. Beijing: China Agricultural Press, 2000. [21] Zhang K, Zhang D Y, Wang L, et al . Study on the ionic absorption and transport in Salicornia europaea L. growing in natural habitats in Xinjiang. Arid Zone Research, 2007, 24(4): 480-486. [22] Wang S M. Effects of salt stress on the characteristics of ion absorption and distribution in Puccinellia tenuirora . Acta Agresita Sinica, 1996, 4(3): 186-193. [23] Cui J J, Zhang X H, Li Y T, et al . Effect of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Prataculturae Sinica, 2015, 24(10): 214-220. [24] Zhu J, Liang Y C, Ding Y F, et al . Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Scientia Agricultura Sinica, 2006, 39(9): 1780-1788. [25] Zhu X C, Song F B, Xu H W. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Chinese Journal of Applied Ecology, 2010, 21(2): 470-475. [26] Merzlyak M N, Solovchenko A E. Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Science, 2002, 163: 881-888. [27] Wang L, Long X H, Meng X F, et al . Effects of salicylic acid on photosynthesis and ion absorption Helianthus tuberosus seedlings under NaCl stress. Chinese Journal of Ecology, 2011, 30(9): 1901-1907. [28] Aro E M, McCaffery S, Anderson J M. Photo inhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiology, 1993, 103: 835-843. [29] Rout N P, Shaw B P. Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science, 2001, 160: 415-423. [30] Kou J T, Shi S L. 2,4-epibrassinolide protection aginest root growth inhibition and oxidative damage of Medicago sativa L. seedling under NaCl stress. Chinese Journal of Eco-Agriculture, 2015, 23(8): 1010-1019. [31] Shen X Y, Dai J Y, Hu A C. Studies on physiological effects of brassinolide (BR) on drought resistance in maize. Journal of Shenyang Agricultural University, 1990, 21(3): 191-195. [32] Weng X Y, Jiang D A, Lu Q, et al . Effect of epi-brassinolid on grain yield and photosynthesis of rice. Journal of Zhejiang Agricultural University, 1995, 21(1): 51-54. [33] Yin B, Liang G P, Jia W, et al . Exogenous EBR mediated the plant growth and absorption and accumulation of Cu, Fe and Zn in tomato seedlings under Cu stress. Chinese Journal of Eco-Agriculture, 2014, 22(5): 578-584. [34] Steduto P, Albrizio R, Giorio P, et al . Gas exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 2000, 44: 243-255. [35] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345. [36] Wu X X, Yu L, Zhu W M. Effect of exogenous nitric oxide on chlorophyll fluorescence characteristics in tomato seedlings under NaCl stress. Chinese Journal of Eco-Agriculture, 2009, 17(4): 746-751. [37] Zhang Y P, Yang S J, Chen Y Y. Effects of 2,4-epibrassinolide on antioxidant enzyme activities and photosynthesis in melon seedlings under high temperature stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1347-1354. [38] Li N, Wang M Y, Sun J, et al . Effects of exogenous 2,4-epibrassinoloide on growth and photosynthesis of tomato seedlings under low light stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(7): 1395-1402. [39] Zhao K F, Li F Z, Zhang F S. Halophyte Flora in China (The second edition)[M]. Beijing: Science Press, 2013. [40] Zhang Z H, Liu Q, Song H X, et al . The salinity tolerance of rice ( Oryza sativa L.) genotypes as affected by nutrients (K + ,Ca 2+ and Mg 2+ ) at seedling stage. Scientia Agricultura Sinica, 2010, 43(15): 3088-3097. [41] Ashraf M Y, Sarwar G. Salt tolerance potential in some members of brassicaceae physiological studies on water relations and mineral contents. Prospects for Saline Agriculture, 2002, 37: 237-245. [42] Zhu X J, Yang J S, Liang Y C, et al . Effects of exogenous calcium on photosynthesis and its related physiological characteristics of rice seedlings under salt stress. Scientia Agricultura Sinica, 2004, 37(10): 1497-1503. [43] Loupassaki M H, Chartzoulakis K S, Digalaki N B, et al . Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars. Journal of Plant Nutrition, 2002, 25(11): 2457-2482. [44] Shu S, Sun J, Guo S R, et al . Effects of distribution exogenous putrescine on PSⅡ photochemistry and ion of cucumber seedlings under salt stress. Acta Horticulture Sinica, 2010, 37(7): 1065-1072. [45] Wu X X, Zhu Y L, Zhu W M, et al . Effects of exogenous nitric oxide on photosynthesis and ionic contents of tomato seedlings under NaCl stress. Plant Nutrition and Fertilizer Science, 2007, 13(4): 658-663. [46] Lu X M, Guo S R. Effects of brassinolide on the polyamines roots of cucumber seedlings under hypoxia ATPase activity and stress. Chinese Journal of Ecology, 2013, 32(3): 611-614. [47] Jing Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa ( Medicago sativa ) and ion distribution in different alfalfa organs. Acta Prataculturae Sinica, 2011, 20(2): 134-139. [48] Tester M, Davenport R. Na + tolerance and Na + transport in higher plants. Annals of Botany, 2003, 91(5): 503-527. [49] Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiology, 1988, 87: 547-550. [50] Lu X M, Sun J, Guo S R, et al . Effects of brassinolide on the mitochondria antioxidant system and ultrastructure of cucumber seedling roots under hypoxic stress. Acta Horticulture Sinica, 2012, 39(5): 888-896. [8] 彭益全, 谢橦, 周峰, 等. 碱蓬和三角叶滨藜幼苗生长、光合特性对不同盐度的响应. 草业学报, 2012, 21(6): 64-74. [9] 康云艳, 杨暹, 郭世荣, 等. 2,4-表油菜素内酯对低氧胁迫下黄瓜幼苗碳水化合物代谢的影响. 中国农业科学, 2011, 44(12): 2495-2503. [10] 马梅, 刘冉, 郑春芳, 等. 油菜素内酯对盐渍下油菜幼苗生长的调控效应及其生理机制. 生态学报, 2015, 35(6): 1837-1844. [11] 李宁, 郭世荣, 束胜, 等. 外源2,4-表油菜素内酯对弱光胁迫下番茄幼苗叶片形态及光合特性的影响. 应用生态学报, 2015, 26(3): 847-852. [16] 寇江涛, 师尚礼. 2,4-表油菜素内酯对盐胁迫下紫花苜蓿种子萌发及幼苗生长的影响. 草原与草坪, 2015, 35(1): 1-8, 19. [18] 毛美飞, 赵冰波, 岳薇. 稀盐酸提取植物中金属元素的效果研究. 浙江农业科学, 1985, (2): 29-35. [19] 计小江, 李超英, 毛美飞. 植物内氯测定前处理方法探讨. 浙江农业科学, 1997, (2): 89-91. [20] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000. [21] 张科, 张道远, 王雷, 等. 自然生境下盐角草的离子吸收-运输特征. 干旱区研究, 2007, 24(4): 480-486. [22] 王锁民. 不同程度盐胁迫对碱茅离子吸收与分配的影响. 草地学报, 1996, 4(3): 186-193. [23] 崔佳佳, 张新慧, 李月彤, 等. 外源Si对盐胁迫下甘草幼苗形态及生理指标的影响. 草业学报, 2015, 24(10): 214-220. [24] 朱佳, 梁永超, 丁燕芳, 等. 硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响. 中国农业科学, 2006, 39(9): 1780-1788. [25] 朱先灿, 宋凤斌, 徐洪文. 低温胁迫下丛枝菌根真菌对玉米光合特性的影响. 应用生态学报, 2010, 21(2): 470-475. [27] 王磊, 隆小华, 孟宪法, 等. 水杨酸对NaCl胁迫下菊芋幼苗光合作用及离子吸收的影响. 生态学杂志, 2011, 30(9): 1901-1907. [30] 寇江涛, 师尚礼. 2,4-表油菜素内酯对NaCl胁迫下紫花苜蓿幼苗根系生长抑制及氧化损伤的缓解效应. 中国生态农业学报, 2015, 23(8): 1010-1019. [31] 沈秀瑛, 戴俊英, 胡安畅. 油菜素内酯对玉米耐旱性的生理效应. 沈阳农业大学学报, 1990, 21(3): 191-195. [32] 翁晓燕, 蒋德安, 陆庆, 等. 表油菜素内酯对水稻产量和光合特性的影响. 浙江农业大学学报, 1995, 21(1): 51-54. [33] 尹博, 梁国鹏, 贾文, 等. 外源油菜素内酯介导Cu胁迫下番茄生长及Cu、Fe、Zn 的吸收与分配. 中国生态农业学报, 2014, 22(5): 578-584. [36] 吴雪霞, 于力, 朱为民. 外源一氧化氮对NaCl 胁迫下番茄幼苗叶绿素荧光特性的影响. 中国生态农业学报, 2009, 17(4): 746-751. [37] 张永平, 杨少军, 陈幼源. 2,4-表油菜素内酯对高温胁迫下甜瓜幼苗抗氧化酶活性和光合作用的影响. 西北植物学报, 2011, 31(7): 1347-1354. [38] 李宁, 王美月, 孙锦, 等. 外源2,4-表油菜素内酯对弱光胁迫下番茄幼苗生长及光合作用的影响. 西北植物学报, 2013, 33(7): 1395-1402. [39] 赵可夫, 李法曾, 张福锁. 中国盐生植物(第二版)[M]. 北京: 科学出版社, 2013. [40] 张振华, 刘强, 宋海星, 等. K + , Ca 2+ 和Mg 2+ 对不同水稻( Oryza sativa L.)基因型苗期耐盐性的影响. 中国农业科学, 2010, 43(15): 3088-3097. [42] 朱晓军, 杨劲松, 梁永超, 等. 盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响. 中国农业科学, 2004, 37(10): 1497-1503. [44] 束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响. 园艺学报, 2010, 37(7): 1065-1072. [45] 吴雪霞, 朱月林, 朱为民, 等. 外源一氧化氮对NaCl 胁迫下番茄幼苗光合作用和离子含量的影响. 植物营养与肥料学报, 2007, 13(4): 658-663. [46] 陆晓民, 郭世荣. 油菜素内酯对低氧胁迫黄瓜幼苗根系多胺、ATPase活性及无机离子含量的影响. 生态学杂志, 2013, 32(3): 611-614. [47] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139. [50] 陆晓民, 孙锦, 郭世荣, 等. 油菜素内酯对低氧胁迫黄瓜幼苗根系线粒体抗氧化系统及其细胞超微结构的影响. 园艺学报, 2012, 39(5): 888-896. |