[1] Hristov A, Callaway T, Lee C, et al . Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. Journal of Animal Science, 2012, 90(12): 4449-4457. [2] Thoetkiattikul H, Mhuantong W, Laothanachareon T, et al . Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Current Microbiology, 2013, 67(2): 130-137. [3] Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes , Ruminococcus albus and Ruminococcus flavefaciens . FEMS Microbiology Letters, 2001, 204(2): 361-366. [4] Krause D O, Denman S E, Mackie R I, et al . Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews, 2006, 27(5): 663-693. [5] Mosoni P, Fonty G, Gouet P. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Current Microbiology, 1997, 35(1): 44-47. [6] Bhat S, Wallace R, Ørskov E. Adhesion of cellulolytic ruminal bacteria to barley straw. Applied and Environmental Microbiology, 1990, 56(9): 2698-2703. [7] Xu J, Hou Y J, Zhao G Q, et al . Effcets of rumen microorganisms on degradation characteristics and ultrastructure of alfalfa stem. Chinese Journal of Animal Nutrition, 2014, 26(3): 776-782. [8] Yang J L, Hou X Z, Gao A W. Quantity of microorganisms associated with solid and liquid phases of rumen contents using RT-PCR. Chinese Academy of Agricultural Sciences, 2009, 42(6): 2126-2132. [9] Xu J, Hou Y J, Yang H B, et al . In situ degradation of oat grass stem and ultrastructure changes by rumen microorganism. Chinese Journal of Animal Science, 2014, 50(7): 35-39. [10] Gomes D I, Detmann E, Valadares Filho S D C, et al . Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber. Animal Feed Science and Technology, 2011, 168(3): 206-222. [11] Chen Y, Wang Z S, Zhang X M, et al . Analysis of the nutritional components and feeding values of commonly used roughages. Acta Prataculturae Sinica, 2015, 24(5): 117-125. [12] McAllister T, Bae H, Jones G, et al . Microbial attachment and feed digestion in the rumen. Journal of Animal Science, 1994, 72(11): 3004-3018. [13] Edwards J E, Huws S A, Kim E J, et al . Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen. FEMS Microbiology Ecology, 2007, 62(3): 323-335. [14] Koike S, Pan J, Kobayashi Y, et al . Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. Journal of Dairy Science, 2003, 86(4): 1429-1435. [15] Michalet-Doreau B, Fernandez I, Fonty G. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. Journal of Animal Science, 2002, 80(3): 790-796. [16] Michalet-Doreau B, Fernandez I, Peyron C, et al . Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Reproduction Nutrition Development, 2001, 41(2): 187. [17] Metzler-Zebeli B U, Schmitz-Esser S, Klevenhusen F, et al . Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats. Anaerobe, 2013, 20: 65-73. [18] Weimer P, Waghorn G, Odt C, et al . Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. Journal of Dairy Science, 1999, 82(1): 122-134. [7] 徐俊, 侯玉洁, 赵国琦, 等. 瘤胃微生物对苜蓿茎降解特性及超微结构的影响. 动物营养学报, 2014, 26(3): 776-782. [8] 杨金丽, 侯先志, 高爱武, 等. 蒙古绵羊瘤胃固, 液相附着微生物的 RT-PCR 检测. 中国农业科学, 2009, 42(6): 2126-2132. [9] 徐俊, 侯玉洁, 杨宏波, 等. 尼龙袋法研究燕麦草茎杆在瘤胃中降解超微结构的动态变化. 中国畜牧杂志, 2014, 50(7): 35-39. [11] 陈艳, 王之盛, 张晓明, 等. 常用粗饲料营养成分和饲用价值分析. 草业学报, 2015, 24(5): 117-125. |