[1] Cramer W, Field C B. Comparing global models of terrestrial net primary productivity(NPP): Introduction[J]. Global Change Biology, 1999, 5: 3-4. [2] Euskirchen E S, Chen J, Li H, et al. Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes[J]. Ecological Modelling, 2002, 154: 75-91. [3] Matsushita B, Tamura M. Integrating remotely sensed data with an ecosystem model to estimate net primary productivity in East Asia[J]. Remote Sensing of Environment, 2001, 81: 58-66. [4] Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research, 1994, 99: 5263-5283. [5] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components[J]. Science, 1998, 281: 237-240. [6] Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity(NPP): Overview and key results[J]. Global Change Biology, 1999, 5(Suppl.1): 1-15. [7] Ruimy A, Sougier B. Methodology for the estimation of terrestrial net primary productivity from remotely sensed data[J]. Journal of Geophysical Research, 1994, 99: 5263-5283. [8] Monteith J L. Solar radiation and productivity in tropical ecosystems[J]. Journal of Applied Ecology, 1972, 9: 747-766. [9] Potter C S, Randerson J, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7: 811-841. [10] Hick J A, Asner G P, Randerson J T, et al. Satellite-derived increases in net primary productivity across North America 1982-1998[J]. Geophysical Research Letters, 2002, 29: 1427-1431. [11] Hicke J A, Asner G P, Randerson J T, et al. Trends in North American net primary productivity derived from satellite cbservations, 1982-1998[J]. Global Biogeochemical Cycles, 2002, 16: 1018-1032. [12] 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608. [13] 高清竹, 万运帆, 李玉娥, 等. 基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局[J]. 应用生态学报, 2007, 18(11): 2526-2532. [14] 张峰, 周广胜. 中国东北样带植被净初级生产力时空动态遥感模拟[J]. 植物生态学报, 2008, 32(4): 798-809. [15] 张峰, 周广胜, 王玉辉. 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J]. 植物生态学报, 2008, 32(4): 786-797. [16] 周才平, 欧阳华, 曹宇, 等. “一江两河”中部流域植被净初级生产力估算[J]. 应用生态学报, 2008, 19(5): 1071-1076. [17] 张杰, 潘晓玲, 高志强, 等. 干旱生态系统净初级生产力估算及变化探测[J]. 地理学报, 2006, 61(1): 15-25. [18] 甘肃省草原总站. 甘肃省草地资源[M]. 兰州: 甘肃科学技术出版社, 1999: 386. [19] 李自珍, 杜国祯, 惠苍, 等. 甘南高寒草地牧场管理的最优控制模型及可持续利用对策研究[J]. 兰州大学学报(自然科学版), 2002, 38(4): 83-85. [20] 刘兴元, 陈全功, 王永宁. 甘南草地退化对生态安全与经济发展的影响[J]. 草业科学, 2006, 23(12): 39-41. [21] 张霞. 甘南高寒草地改良试验研究[J]. 农业科技与信息, 2008, 15: 63-64. [22] 马玉秀. 甘南州高寒放牧草地合理利用与草地生态系统可持续发展对策[J]. 甘肃农业, 2006, 6: 82-84. [23] 李洪泉, 高兰阳, 刘刚, 等. 草畜优化条件下草地生态载畜量测算方法新探[J]. 草业学报, 2009, 18(5): 262-265. [24] 仁青吉, 武高林, 任国华. 放牧强度对青藏高原东部高寒草甸植物群落特征的影响[J]. 草业学报, 2009, 18(5): 256-261. [25] 孙鹏举, 陈英. 甘南草地生态系统生态位适宜度及其空间差异分析[J]. 草业科学, 2009, 26(4): 1-5. [26] Running S W, Thornton P E, Nemani R, et al. Global terrestrial gross and net primary productivity from the earth observing system[A]. In: Sala O, Jackson R, Mooney H. Methods in Ecosystem Science[M]. New York: Springer Verlag, 2000: 44-57. [27] 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005, 9(3): 300-307. [28] Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94: 105-122. [29] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局[J]. 植物生态学报, 2004, 28(4): 491-498. [30] 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳循环及其全球意义[A]. 见: 王庚辰, 温玉璞. 温室气体浓度和排放监测及相关过程[M]. 北京:中国环境科学出版社, 1996: 129-139. [31] 朴世龙, 方精云. 1982-1999年青藏高原植被净第一性生产力及其时空变化[J]. 自然资源学报, 2002, 17(3): 373-380. [32] 梁天刚, 崔霞, 冯琦胜, 等. 2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测[J]. 草业学报, 2009, 18(6): 12-22. |