[1] Zhang C B, Li J L, Zhang Y, et al . A quantitative analysis method for measuring grassland coverage based on RGB model. Acta Prataculturae Sinica, 2013, 22(4): 220-226.
[2] Zhang X X, Zhu Q K, Wu G M, et al . Vegetation coverage assessment by digital photos. Journal of Beijing Forestry University, 2008, 30(1): 164-169.
[3] Qin W, Zhu Q K, Zhang X X, et al . Review of vegetation covering and its measuring and calculating method. Journal of Northwest Science-Technology University of Agriculture and Forest, 2006, 34(9): 163-170.
[4] De Roo A P J, Offermans R J E, Cremers D T, et al . A single-event physically-based hydrological and soil erosion model for drainage basins I: Theory, input and output. Hydrological Processes, 1996, (10): 1107.
[5] Qin W, Cao W H, Zou C Q, et al . Erosion and sediment yield model of big and middle scale watershed in loess plateau considering differentiation between upper and lower of the shoulder line of valleys. Journal of Basic Science and Engineering, 2015, 23(1): 12-29.
[6] Jiao J Y, Wang W Z. The benefits of runoff and sediment reducing & effective cover rate for soil and water conservation of artificial grassland on loess plateau. Acta Agrestia Sinica, 2001, 9(3): 176-182.
[7] Zhang G H, Liang Y M. A summary of impact of vegetation coverage on soil and water conservation benefit. Research of Soil and Water Conservation, 1996, 3(2): 104-110.
[8] Bao X Q, He J L, Xing E D, et al . Science and technology development strategy of grassland soil and water conservation. China Water Resources, 2008, 21: 66-68.
[9] Du J Z, Wang G X, Li Y S. Rate and causes of degradation of alpine grassland in the source regions of the Yangtze and Yellow Rivers during the last 45 years. Acta Prataculturae Sinica, 2015, 24(6): 5-15.
[10] Zhao J C, Liu S H. Research on the impact of vegetation change on land-atmosphere coupling strength in northwest China. Chinese Journal of Geophysics, 2015, 58(1): 47-62.
[11] Ji L. Remote Sensing Monitoring of the Degree of Grassland Desertification and Analysis Characteristics of Vegetation and Soil Nutrient in Ruoergai[D]. Ya’an: Sichuan Agricultural University, 2012.
[12] Cao N, Han Y J, Ma N. Analysis of the desertification and vegetation coverage monitoring changes in Yanchi county-Yanchi city as an example. Agriculture Network Information, 2013, (10): 123-125.
[13] Guo S M. Research of Vegetation Coverage Distribution Changes of Alpine Grassland Based on 3s Technology[D]. Lanzhou: Lanzhou University, 2009.
[14] Chen Z G, Ba T N C, Xu Z Y, et al . Measuring grassland vegetation cover using digital camera images. Acta Prataculturae Sinica, 2014, 23(6): 20-27.
[15] Chen J J, Yi S H, Ren S L, et al . Retrieval of vegetation cover of alpine grassland and the efficiency of remote sensing retrieval in the upper of Shule River Basin. Pratacultural Science, 2014, 31(10): 56-65.
[16] Ren S L, Yi S H, Chen J J, et al . Comparisons of alpine grassland fractional vegetation cover estimation using different digital cameras and different image analysis method. Pratacultural Science, 2014, 31(6): 1007-1013.
[17] Wang W T, Xie D H, Li X W. Universal scaling methodology in remote sensing science by constructing geographic trend surface. Journal of Remote Sensing, 2014, 18(6): 1139-1147.
[18] Li X W, Wang W T. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 2013, 68(9): 1163-1169.
[19] Wang H B. Study on Scale Transformation of Forest Coverage and Land Type Division Technique[D]. Beijing: Beijing Forestry University, 2014.
[20] Liu L Y. Simulation and correction of spatial scaling effects for leaf area index. Journal of Remote Sensing, 2014, 18(6): 1158-1169.
[21] Chen Y, Gillieson D. Evaluation of Landsat TM vegetation indices for estimating vegetation cover on semi-arid rangelands-A case study from Australia. Canadian Journal of Remote Sensing: Journal Canadien de Télédétection, 2009, 35(5): 1-17.
[22] Pickup G, Chewing V H, Nelson D J, et al . Estimating changes in vegetation cover over time in arid rangelands using Landsat MSS data. Remote Sensing of Environment, 1993, 43(3): 243-263.
[23] Pickup G. A simple model for predicting herbage production from rainfall in rangelands and its calibration using remotely-sensed data. Journal of Arid Environments, 1995, 30(2): 227-245.
[24] Foran B D. Detection of yearly cover change with Landsat MSS on pastoral landscapes in Central Australia. Remote Sensing of Environment, 1987, 23(2): 333-350.
[25] Irons J R, Dwyer J L, Barsi J A, et al . The next Landsat satellite: The landsat data continuity mission. Remote Sensing of Environment, 2012, 122: 11-21.
[26] Chu Q W, Zhang H Q, Wu Y W, et al . Application research of Landsat-8. Remote Sensing Information, 2013, 28(4): 110-114.
[27] Li X W, Niu Z C, Jiang S, et al . Study on the usage of Landsat 8 satellite remote sensing image in ecological environment monitoring. Environmental Monitoring and Forewarning, 2013, 5(6): 1-5.
[28] Zhang F L, Gou B C, Li J L. Quantitative study of vegetation and non-vegetation Landsat7 ETM+with Landsat8 OLI. Shanxi Architecture, 2014, 40(11): 240-241.
[29] Xu H Q, Tang F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecologica Sinica, 2013, 33(11): 3249-3257.
[30] Yang Y B, Zhang Y. Degeneration and its comprehensive control of grassland in Xiahe county. Pratacultural Science, 1999, 16(6): 50-56.
[31] Guo H W. Problems and countermeasures for livestock husbandry development in Xiahe county. Prataculture and Animal Husbandry, 2009, (11): 60-62.
[32] Ding W G, Lei Q, Yang Q. A research on the motivation forces of the natural pasture and sustainable development in Xiahe County. Journal of Arid Land Resources and Environment, 2007, 21(12): 84-88.
[33] Li J. A Study of Land Surface Temperature Retrieval for the Region of Changbai Mountain of China[D]. Changchun: Jilin University, 2004.
[34] Lan J S, Guo Y. A research on the algorithm of equivalent wavelength and the impact to the retrieved LSBT based on TM6. Remote Information, 2006, (88): 10-13.
[35] Yang Y Y, Shi Z T, He P. Analysis of thermal environment of the main urban area of Kunming based on muti-source data. Tropical Geography, 2013, 33(1): 21-27.
[36] Lin Y. The Inversion of Sea Surface Temperature Based on Multi-source Remote Sensing[D]. Shanghai: East China Normal University, 2013.
[37] Fazakas Z. Volum and forest cover estimation over southern Sweden using AVHRR data calibrated with TM data. International Journal of Remote Sensing, 1996, 17(9): 1701-1709.
[38] Luo Y, Xu J H, Yue W Z. Research on vegetation indices based on the remote sensing images. Ecologic Science, 2005, 24 (1): 75-79.
[39] Kang Y J. The application for vegetation index on the grassland remote sensing. Technology & Industry, 2011, 6: 39-41.
[40] Jacques D C, Kergoat L, Hiernaux P, et al . Monitoring dry vegetation masses in semi-arid areas with MODISSWIR bands. Remote Sensing of Environment, 2014, 153: 40-49.
[41] Ma L Y. Spatio-Temporal Dynamic Changes of Grassland Vegetation Cover and Phenology in Gannan Prefecture[D]. Lanzhou: Lanzhou University, 2013.
[42] Huang X D, Li X, Liang T G. Dynamics of MODIS vegetation indices and their relationship with meteorological factors for different grassland types on northern Xinjiang. Journal of Lanzhou University: Natural Sciences, 2007, 43(3): 42-47.
[43] Wang Z X, Liu C, Huet E A. From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research. Acta Ecologica Sinica, 2003, 23(5): 979-987.
[1] 章超斌, 李建龙, 张颖, 等. 基于RGB模式的一种草地盖度定量快速测定方法研究. 草业学报, 2013, 22(4): 220-226.
[2] 张学霞, 朱清科, 吴根梅, 等. 数码照相法估算植被盖度. 北京林业大学学报, 2008, 30(1): 164-169.
[3] 秦伟, 朱清科, 张学霞, 等. 植被盖度及其测算方法研究. 西北农林科技大学学报(自然科学版), 2006, 34(9): 163-170.
[5] 秦伟, 曹文洪, 左长清, 等. 考虑沟-坡分异的黄土高原大中流域侵蚀产沙模型. 应用基础与工程科学学报, 2015, 23(1): 12-29.
[6] 焦菊英, 王万忠. 人工草地在黄土高原水土保持中的碱水减沙效益与有效盖度. 草地学报, 2001, 9(3): 176-182.
[7] 张光辉, 梁一民. 植被盖度对水土保持功效影像的研究综述. 水土保持研究, 1996, 3(2): 104-110.
[8] 包小庆, 何京丽, 邢恩德, 等. 草地水土保持科技发展战略. 中国水利, 2008, 21: 66-68.
[9] 杜际增, 王根绪, 李元寿. 近45年长江黄河源区高寒草地退化特征及成因分析. 草业学报, 2015, 24(6): 5-15.
[10] 赵靖川, 刘树华. 植被变化对西北地区陆-气耦合强度的影像. 地球物理学报, 2015, 58(1): 47-62.
[11] 纪磊. 若尔盖草地沙化程度的遥感监测及其制备特征与土壤养分的分析[D]. 雅安: 四川农业大学, 2012.
[12] 曹宁, 韩颖娟, 马宁. 荒漠化及植被盖度监测变化分析. 农业网络信息, 2013, (10): 123-125.
[13] 郭述茂. 基于3s技术的高寒草地植被盖度分布特征及动态变化研究[D]. 兰州: 兰州大学, 2009.
[14] 陈祖刚, 巴图娜存, 徐芝英, 等. 基于数码相机的草地植被盖度测量方法对比研究. 草业学报, 2014, 23(6): 20-27.
[15] 陈建军, 宜树华, 任世龙, 等. 疏勒河上游高寒草地植被盖度反演及精度评价. 草业科学, 2014, 31(10): 56-65.
[16] 任世龙, 宜树华, 陈建军, 等. 基于不同数码照相机和图像处理方法的高寒草地植被盖度估算的比较. 草业科学, 2014, 31(6): 1007-1013.
[17] 王玮婷, 谢东辉, 李小文. 构造地理要素趋势面的尺度转换普适性方法探讨. 遥感学报, 2014, 18(6): 1139-1147.
[18] 李小文, 王炜婷. 定量遥感尺度效应刍议. 地理学报, 2013, 68(9): 1163-1169.
[19] 王海宾. 基于森林盖度的尺度转换及地类区划方法研究[D]. 北京: 北京林业大学, 2014.
[20] 刘良云. 叶面积指数遥感尺度效应与尺度纠正. 遥感学报, 2014, 18(6): 1158-1169.
[26] 初庆伟, 张洪群, 吴业炜, 等. Landsat 8卫星数据应用探讨. 遥感信息, 2013, 28(4): 110-114.
[27] 李旭文, 牛志春, 姜晟, 等. Landsat 8卫星OLI遥感影像在生态环境监测中的应用研究. 环境监控与预警, 2013, 5(6): 1-5.
[28] 张风霖, 缑变彩, 李靖琳. Landsat7 ETM+与Landsat8 OLI植被和非植被定量研究. 山西建筑, 2014, 40(11): 240-241.
[29] 徐涵秋, 唐菲. 新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义. 生态学报, 2013, 33(11): 3249-3257.
[30] 杨延彪, 张英. 夏河县草地退化及综合治理措施. 草业科学, 1999, 16(6): 50-56.
[31] 郭宏伟. 夏河县畜牧业发展面临的问题及对策. 草业与畜牧, 2009, (11): 60-62.
[32] 丁文广, 雷青, 杨勤. 甘肃省夏河县草地退化驱动力及可持续发展对策研究. 干旱区资源与环境, 2007, 21(12): 84-88.
[33] 李建. 长白山地区地表温度反演研究[D]. 长春: 吉林大学, 2004.
[34] 兰敬松, 郭跃. 针对TM6有效波长的计算方式及其对低温反演的影像研究. 遥感信息(理论研究), 2006, (88): 10-13.
[35] 杨云源, 史正涛, 何萍. 基于多元数据的昆明市主城区建筑区热环境分析. 热带地理, 2013, 33(1): 21-27.
[36] 林媛. 基于多元遥感的海水表面温度反演研究-以乐清湾为例[D]. 上海: 华东师范大学, 2013.
[38] 罗亚, 徐建华, 岳文泽. 基于遥感影像的植被指数研究方法述评. 生态科学, 2005, 24(1): 75-79.
[39] 康耀江. 植被指数在草地遥感中的应用初探. 科技与产业, 2011, 6: 39-41.
[41] 马琳雅. 甘南州草地植被覆盖度与物候期时空变化动态特征[D]. 兰州: 兰州大学, 2013.
[42] 黄晓东, 李霞, 梁天刚. 北疆地区不同草地类型MODIS植被指数变化动态及其与气候因子的关系. 兰州大学学报: 自然科学版, 2007, 43(3): 42-47.
[43] 王正兴, 刘闯, Huet E A. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI. 生态学报, 2003, 23(5): 979-987. |