[1] Sudipta S, Menas K. Interannual variability of vegetation over the Indian sub-continent and its relation to the different meteorological parameters. Remote Sensing of Environment, 2004, 90: 268-280.
[2] Li F, Zeng Y, Li X S, et al . Remote sensing based monitoring of interannual variations in vegetation activity in China from 1982 to 2009. Science China: Earth Sciences, 2014, 57: 1800-1806.
[3] Hou M T, Zhao H Y, Wang Z, et al . Vegetation responses to climate change by using the satellite-derived normalized difference vegetation index: A Review. Climatic and Environmental Research, 2013, 18(3): 353-364.
[4] Arnon K, Nurit A, Rachel T P, et al . Use of NDVI and land surface temperature for drought assessment: merits and limitations. Journal of Climate, 2010, 23: 618-633.
[5] Barbosa H A, Huete A R, Baethgen W E. A 20-year study of NDVI variability over the Northeast region of Brazil. Journal of Arid Environments, 2006, 67: 288-307.
[6] Guo N, Wang X P. Advances and developing opportunities in remote sensing of drought. Journal of Arid Meteorology, 2015, 33(1): 1-18.
[7] Piao S L, Wang X H, Ciais P. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 2011, 17(10): 3228-3239.
[8] Gu J, Li X, Huang C L. Research on the reconstructing of Time-series NDVI Data. Remote Sensing Technology and Application, 2006, 21(4): 391-395.
[9] Han P, Yao J, Li T H. Comparison of 3 NDVI datasets and the application at Yanhe basin, China. Journal of Basic Science and Engineering, 2014, 4: 661-674.
[10] Wang Z X, Liu C, Huete A. From AVHRR-NDVI to MODIS-EVI: Advances in vegetation index research. Acta Ecologica Sinica, 2003, 23(5): 979-987.
[11] Geng L Y, Ma M G. Advance in method comparison of reconstructing remote sensing time series data sets. Remote Sensing Technology and Application, 2014, 29(2): 362-368.
[12] Ma M G, Song Y, Wang X F, et al . Development status and application research of the time series remote sensing data products based on AVHRR、VEGETATION and MODIS. Remote Sensing Technology and Application, 2012, 27(5): 663-670.
[13] Du J Q, Shu J M, Wang Y H, et al . Comparison of GIMMS and MODIS normalized vegetation index composite data for Qinghai-Tibet Plateau. Chinese Journal of Applied Ecology, 2014, 25(2): 533-544.
[14] Michishita R, Zhenyu J, Jin C, et al . Empirical comparison of noise reduction techniques for NDVI time-series based on a new measure. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91: 17-28.
[15] Beck P S, Goetz S J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environmental Research Letters, 2011, 6: 5501-5511.
[16] Jeremy L W, David S G, Julia E A, et al . Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. Journal of Arid Environments, 2004, 58(2): 249-272.
[17] Steven M D, Timothy J M, Frédéric B, et al . Intercalibration of vegetation indices from different sensor systems. Remote Sensing of Environment, 2003, 88(4): 412-422.
[18] Chen Y L, Long B J, Pan X B, et al . Differences between MODIS NDVI and AVHRR NDVI in monitoring grasslands change. Journal of Remote Sensing, 2011, 15(4): 831-845.
[19] Fensholt R, Proud S R. Evaluation of earth observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 2012, 119(16): 131-147.
[20] Mao D H, Wang Z M, Luo L, et al . Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 528-536.
[21] Geng L, Ma M, Wang X, et al . Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the heihe river basin, China. Remote Sensing, 2014, 6: 2024-2049.
[22] Li R, Zhang X, Liu B, et al . Review on methods of remote sensing time-series data reconstruction. Journal of Remote Sensing, 2009, 13(2): 335-341.
[23] Hird J N, McDermid G J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sensing of Environment, 2009, 113: 248-258.
[24] Li Z H. A Study on the Eco-environment Evolution of Yangtze River Delta Region Based on the Retrieval & Reconstruction of MODIS Time Series Datasets[D].Shanghai: East China Normal University, 2011.
[25] Jönsson P, Eklundh L. TIMESAT-a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 2004, 30(8): 833-845.
[26] Holben B N. Characterististics of maximun-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 1986, 7(11): 1417-1434.
[27] Cao Y F, Wang Z X, Deng F P. Fidelity performance of three filters for high quality NDVI time-series analysis. Remote Sensing Technology and Application, 2010, 1(1): 118-125.
[28] Song C Q, You S C, Ke L H, et al . Analysis on three NDVI time-series reconstruction methods and their applications in North Tibet. Journal of Geo-Information Science, 2011, 1(1): 133-143.
[29] Madden H H, Chem A. Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Analytical Chemistry, 1978, (9): 1383-1386.
[30] Moulin S, Kergoat L, Viovy N, et al . Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 2010, 10(6): 1154-1170.
[31] Liu H. Spring Phenology Model of Grassland Based on Soil Moisture and Air Temperature and Vegetation Reactions to Drought[D]. Beijing: Tsinghua University, 2012.
[32] Wang L, Ding J L. Vegetation index feature change and its influencing factors and spatial-temporal process analysis of desert grassland in the Ebinur Lake Nature Reserve, Xinjiang. Acta Prataculturae Sinica, 2015, 24(5): 4-11.
[33] Zhang X, Friedl M A, Schaaf C B, et al . Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003, 84(3): 471-475.
[3] 侯美亭, 赵海燕, 王筝, 等. 基于卫星遥感的植被NDVI对气候变化响应的研究进展. 气候与环境研究, 2013, 18(3): 353-364.
[6] 郭铌, 王小平. 遥感干旱应用技术进展及面临的技术问题与发展机遇. 干旱气象,2015, 33(1): 1-18.
[8] 顾娟, 李新, 黄春林. NDVI 时间序列数据集重建方法述评. 遥感技术与应用, 2006, 21(4): 391-395.
[9] 韩鹏, 姚娟, 李天宏. 3种不同数据源NDVI的比较分析及其在延河流域的应用研究. 应用基础与工程科学学报, 2014, 4: 661-674.
[10] 王正兴, 刘闯, Huete A. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI. 生态学报, 2003, 23(5): 979-987.
[11] 耿丽英, 马明国.长时间序列NDVI数据重建方法比较研究进展.遥感技术与应用, 2014, 29(2): 362-368.
[12] 马明国, 宋怡, 王旭峰, 等. AVHRR、VEGETATION和MODIS时间序列遥感数据产品现状与应用研究进展. 遥感技术与应用, 2012,27(5): 663-670.
[13] 杜加强, 舒俭民, 王跃辉, 等. 青藏高原MODIS NDVI与GIMMS NDVI的对比. 应用生态学报, 2014, 25(2): 533-544.
[22] 李儒, 张霞, 刘波, 等. 遥感时间序列数据滤波重建算法发展综述.遥感学报, 2009, 13(2): 335-341.
[24] 黎治华. 基于MODIS反演重构时间序列数据的长江三角洲地区生态环境演变研究[D]. 上海: 华东师范大学, 2011.
[27] 曹云锋, 王正兴, 邓芳萍. 3种滤波算法对NDVI高质量数据保真性研究. 遥感技术与应用, 2010, 1(1): 118-125.
[28] 宋春桥, 游松财, 柯灵红, 等. 藏北地区三种时序NDVI重建方法与应用分析. 地球信息科学学报, 2011, 1(1): 133-143.
[31] 刘慧. 基于土壤水分和气温的草地返青模型及植被干旱研究[D]. 北京: 清华大学, 2012.
[32] 王璐, 丁建丽. 艾比湖保护区荒漠植被时空过程变化及其植被指数影响因素分析. 草业学报, 2015, 24(5): 4-11. |