Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2016, Vol. 25 ›› Issue (8): 27-35.DOI: 10.11686/cyxb2016012

Previous Articles     Next Articles

Responses of greenhouse gas emissions to water table fluctuations in an alpine wetland on the Qinghai-Tibetan Plateau

WANG Dong-Xue, GAO Yong-Heng*, AN Xiao-Juan, WANG Rui, XIE Qing-Yan   

  1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2016-01-11 Revised:2016-03-25 Online:2016-08-20 Published:2016-08-20

Abstract: A mesocosm experiment was conducted to study the effect of water table level on greenhouse gas (CO2, CH4, N2O) emissions in alpine wetland on the Qinghai-Tibetan Plateau. Two treatments were adopted; stable water table (SW; about 0 cm or at soil surface) and dynamic water table (DW; 0 cm reducing to 45 cm and returning to 0 cm). The results showed that alpine wetland water table changes had no significant effect on soil dissolved organic carbon (DOC), but promoted transformations of ammonium (NH4+-N) and nitrate (NO3--N). The cumulative emissions of CO2 were 235.2 and 209.7 g/m2 for SW and DW treatment, respectively but were not significantly different. However, there was a significant treatment difference on CH4 emissions. Cumulative emission of CH4 for DW (0.86 g/m2) decreased by 52.18%, compared with SW (1.79 g/m2). The cumulative emission of N2O for SW (6.72 mg/m2) was significantly higher than that for DW (7.36 mg/m2). There was a positive correlation between CO2/CH4 release and soil temperature in the alpine wetland with soil temperatures below about 10 ℃. The drop in the water table increased the sensitivity of CO2/CH4 release to soil temperature. Models of the response of CO2, CH4 and N2O emissions to water table changes were different in alpine wetland on the Qinghai-Tibetan Plateau.