[1] Chen W X, Chen W F. Exertion of biological nitrogen fixation in order to reducing the consumption of chemical nitrogenous fertilizer. Review of China Agricultural Science and Technology, 2004, (6): 3-6. [2] Guo L Z, Zhang T H, He Y H, et al . Effect of Rhizobium inoculation on crop growth and nitrogen nutrition of a pea/maize intercropping system. Acta Prataculturae Sinica, 2012, 21(1): 43-49. [3] Meng Q Y. Effect of rhizobia application on number of soil ammonifying bacteria, nitrifying bacteria, nitrogen fixation bacteria and soil nitrogen fertility. Heilongjiang Agricultural Sciences, 2012, (4): 55-57. [4] Li J, Jia H Y, Xie J M, et al . Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield, quality, photosynthesis and fertilizer utilization rate in broccoli. Acta Prataculturae Sinica, 2015, 24(1): 47-55. [5] Wang P, Zhou D W, Jiang S C. Research on biological nitrogen fixation of grass-legume mixtures in a semi-arid area of China. Acta Prataculturae Sinica, 2010, 19(6): 276-280. [6] Zhang Q L, Lin M, Ping S Z. Biological nitrogen fixation and its application in sustainable agriculture. Biotechnology Bulletin, 2008, (2): 1-4. [7] Jiao B. China Green Manure[M]. Beijing: Agriculture Press, 1986: 396-411. [8] Yang X, Li J H, Zhu X Q, et al . Study on the seed production on different sowing date of Vicia sativa in Dazi of Tibet. China Herbivores Science, 2013, 33(5): 37-39. [9] Cordovilla M P, Ocana A, Ligero F, et al . Salinity effects on growth analysis and nutrient composition in four grain legumes-rhizobium symbiosis. Journal of Plant Nutrition, 1995, 18(8): 1595-1609. [10] Faghire M, Bargaz A, Farissi M, et al . Effect of salinity on nodulation, nitrogen fixation and growth of common bean ( Phaseolus vulgaris ) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis, 2011, 55(2): 69-75. [11] Cordovilla M P, Ligero F, Lluch C. Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in Faba bean ( Vicia faba L.) under salt stress. Plant and Soil, 1995, 172: 289-297. [12] Han M, Zhang H L, Guo S S, et al . Germplasm evaluation for yield in Vicia sativa L. Crops, 2013, (4): 67-69. [13] Cao L, Qin S H, Zhang J L, et al . Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields. Acta Prataculturae Sinica, 2013, 22(3): 139-145. [14] Ma X T. The Study of Screening High Symbiotic Matching Combinations of Rhizobia and Alfalfa Varieties[D]. Beijing: Master Dissertation of Chinese Academy of Agricultural Sciences, 2009. [15] Ning G Z, Liu H Q, Ma X T. Rhizobium Leguminosarum and its Application Technology[M]. Zhengzhou: Central Plains Farmers Press, 1998: 63-64. [16] Zhou Y Q, Deng B, Ma X T, et al . Optimization of alfalfa rhizobium medium. Acta Agrestia Sinica, 2013, 21(3): 607-611. [17] Han M, Wang Z, Han X R. Screening and identification of a hi-efficient peanut rhizobia strain. Journal of Microbiology, 2013, 33(1): 44-47. [18] Liu X Y, Chen W X, Zhang B. β-proteorhizobia and nonrhizobial species——a review. Acta Microbiologica Sinica, 2008, 48(10): 1408-1412. [19] Guan F Z, Zhong S J, Qiu H D, et al . Isolating and identification of rhizobial strains of Chinese Milk Vetch. Fujian Journal of Agricultural Sciences, 2012, 27(5): 524-532. [20] Xia Y, Min H, Lv Z B, et al . The osmoprotectant of the salt-tolerant bacteria and its regulatory mechanism. Bulletin of Biology, 2002, 37(12): 4-5. [21] Wang W W, Tang H Z, Xu P. Salt-tolerance related genes in halophilic bacteria and Achaea. Microbiology China, 2015, 42(3): 550-558. [22] Guo L Z, He Y H. Adaptability of pea rhizobia to NaCl and pH. Research of Soil and Water Conservation, 2009, 16(5): 270-277. [23] Zhao Y Z, Wang H M, Wang Z Q. The role of leguminous plant rhizobium in ecological environment. Agro-Environment & Development, 2013, 30(4): 7-12. [24] Yang P Z. Mechanism Involved in Drought/Salt Tolerance Improvement in Alfalfa Due to Symbiotic Interaction with Rhizobium[D]. Yangling: Northwest A&F University, 2012. [25] Wang W D, Yang P Z, Zhang P, et al . The effect of symbiotic rhizobium on the antioxidative and osmoregulatory capability in alfalfa under salt stress. Acta Prataculturae Sinica, 2013, 22(5): 120-127. [26] Chen W X, Wang E T, Chen W F. The relationship between the symbiotic promiscuity of rhizobia and legumes and their geographical environments. Scientia Agricultural Sinica, 2004, 37(1): 81-86. [27] Shi J, Zhang L, Zhang Q, et al . The effect of calcium and acid-tolerant rhizobium on the growth of alfalfa planted in acid soil. Plant Nutrition and Fertilizer Science, 2008, 14(3): 602-607. [28] Zhang P, Yang P Z, Wang W D, et al . Study on physiological change of alfalfa with symbiotic rhizobium under drought stress. Acta Agrestia Sinica, 2013, 21(5): 938-944. [29] Haag A F, Arnold M F F, Myka K K, et al . Molecular insights into bacteroid development during rhizobium-legume symbiosis. FEMS Microbiology Reviews, 2013, 37: 364-383. [30] Chen L Y, Zhang L J, Zhou Z Y. Research of salt tolerable rhizobia inoculation effects on Medicago sativa . Acta Prataculturae Sinica, 2008, 17(5): 13-47. [1] 陈文新, 陈文峰. 发挥生物固氮作用减少化学氮肥用量. 中国农业科技导报, 2004, (6): 3-6. [2] 郭丽琢, 张天虎, 何亚慧, 等. 根瘤菌接种对豌豆/玉米间作系统作物生长及氮素营养的影响. 草业学报, 2012, 21(1): 43-49. [3] 孟庆英. 施用根瘤菌对土壤微生物氮素类群数量及土壤氮素的影响. 黑龙江农业科学, 2012, (4): 55-57. [4] 李杰, 贾豪语, 颉建明, 等. 生物肥部分替代化肥对花椰菜产量、品种、光合特性及肥料利用率的影响. 草业学报, 2015, 24(1): 47-55. [5] 王平, 周道玮, 姜世成. 半干旱地区禾-豆混播草地生物固氮作用研究. 草业学报, 2010, 19(6): 276-280. [6] 张秋磊, 林敏, 平舒珍. 生物固氮及在可持续农业中的应用. 生物技术通报, 2008, (2): 1-4. [7] 焦彬. 中国绿肥[M]. 北京: 农业出版社, 1986: 396-411. [8] 杨晓, 李锦华, 朱新强, 等. 西藏达孜箭筈豌豆不同播种期种子生产性能研究. 中国草食动物科学, 2013, 33(5): 37-39. [12] 韩梅, 张洪亮, 郭石生, 等. 绿肥作物箭筈豌豆种质产量性状综合评价. 作物杂志, 2013, (4): 67-69. [13] 曹莉, 秦舒浩, 张俊连, 等. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响. 草业学报, 2013, 22(3): 139-145. [14] 马晓彤. 苜蓿根瘤菌与苜蓿品种共生匹配优良组合筛选的研究[D]. 北京: 中国农业科学院, 2009. [15] 宁国赞, 刘慧琴, 马晓彤. 豆科根瘤菌及其应用技术[M]. 郑州: 中原农民出版社, 1998: 63-64. [16] 周冀琼, 邓波, 马晓彤, 等. 紫花苜蓿根瘤菌培养基的优化研究. 草地学报, 2013, 21(3): 607-611. [17] 韩梅, 王卓, 韩晓日. 1株高效花生根瘤菌的筛选与鉴定. 微生物学杂志, 2013, 33(1): 44-47. [18] 刘晓云, 陈文新, 张斌. β-根瘤菌及特殊α-根瘤菌的研究概况. 微生物学报, 2008, 48(10): 1408-1412. [19] 管凤贞, 钟少杰, 邱宏端, 等. 紫云英根瘤菌的分离与鉴定. 福建农业学报, 2012, 27(5): 524-532. [20] 夏颖, 闵航, 吕正兵, 等. 耐盐细菌的渗透保护剂及其调渗机制. 生物学通报, 2002, 37(12): 4-5. [21] 王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展. 微生物学通报, 2015, 42(3): 550-558. [22] 郭丽琢, 何亚慧. 豌豆根瘤菌耐盐适应性鉴定. 水土保持研究, 2009, 16(5): 270-277. [23] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用. 农业环境与发展, 2013, 30(4): 7-12. [24] 杨培志. 紫花苜蓿根瘤菌共生对干旱及盐胁迫的响应机制研究[D]. 杨凌: 西北农林科技大学, 2012. [25] 王卫栋, 杨培志, 张攀, 等. 共生根瘤菌对NaCl胁迫下紫花苜蓿抗氧化和渗透调节能力的影响. 草业学报, 2013, 22(5): 120-127. [26] 陈文新, 王恩涛, 陈文峰. 根瘤菌-豆科植物共生多样性与地理环境的关系. 中国农业科学, 2004, 37(1): 81-86. [27] 石杰, 张磊, 张琴, 等. 接种耐酸根瘤菌和施钙对酸性土上紫花苜蓿生长的影响. 植物营养学报, 2008, 14(3): 602-607. [28] 张攀, 杨培志, 王卫栋, 等. 干旱胁迫下根瘤菌共生紫花苜蓿抗旱生理变化研究. 草地学报, 2013, 21(5): 938-944. [30] 陈利云, 张丽静, 周志宇. 耐盐根瘤菌对紫花苜蓿接种效果的研究. 草业学报, 2008, 17(5): 43-48. |