[1] Chen W X. The role of legumes-root nodule bacteria nitrogen fixing system in development of west area of China. Acta Agrestia Sinica, 2004, 12(1): 12. [2] Shi Y C. Extricate ourselves from the dilemma of desertification control and return of reclaimed farmland (to afforested area). Acta Agrestia Sinica, 2004, 12(2): 83-86. [3] Yuan Q H. Advances in alfalfa diseases in China. Plant Protection, 2007, 33(1): 6-10. [4] Liu R, Hou T J. A preliminary list of fungal diseases on forage legumes in northern China. Chinese Journal of Grassland, 1984, 1: 56-61. [5] Nan Z B. Alfalfa diseases and their integrated control systems in our country. Animal Science & Veterinary Medicine, 2001, 18(4): M1-M4. [6] Lv X L, Ai L, Yin Q S, et al . The investigation of the downy mildew of alfalfa. The Journal of Gansu Agricultural University, 1976, (3): 39-42. [7] Nan Z B. The influence of rust disease on the nutritional ingredients of Medicago sativa . Journal of Grassland and Forage in China, 1985, 3(2): 33-36. [8] Geng H Z. Chinese Alfalfa[M]. Beijing: China Agriculture Press, 1995: 114-130. [9] Hou T J, Zhou S Q. Influence of downy mildew on growth and root nodulation of seedlings of alfalfa. Grassland of China, 1997, 2: 52-54. [10] Su S C, Wang X W, Wang C L, et al . Occurrence of common leafs pot of alfalfa in Xinjiang. Pratacultural Science, 1997, 14(5): 31-33. [11] Yuan Q H, Li X L, Zhang W S. Studies on Pseudopeziza medicaginis and its biological characteristics. Plant Protection, 2001, 27(1): 8-12. [12] Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annual Review Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275. [13] Wojtaszek P. Oxidative burst an early plant response to pathogen infection. Biochemical Journal, 1997, 322: 681-692. [14] Keppler L D, Baker C J. · O 2 - initiated lipid peroxidation in a bactia-induced hypersensitive reaction in tobacco cell suspension. Phytopathology, 1989, 79: 555. [15] Keppler L D, Baker C J. Initiated lipid peroxidation in a bacteria induced hypersensitive reaction in tobacco suspension cells. Phytopathology, 1989, 79: 974-978. [16] Wang L G, Li L. Role of reactive oxygen intermediates and nitric oxide in resistance to plant diseases. Chinese Bulletin of Botany, 2003, 20(3): 354-360. [17] Guo Z J, Li D B. Active oxygen species in plant disease resistance. Acta Botanica Sinica, 2000, 42(9): 881-891. [18] Sun D Y, Guo Y L, Ma W G. Cell Signal Transduction[M]. Beijing: Science Press, 1998: 245. [19] Vianello A, Macri F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. Journal of Bioenergetics and Biomembranes, 1991, 23: 409-423. [20] Elstner E F. Mechanisms of Oxygen Activation in Different Compartments of Plant Cells[M]//Pelland E J, Steffen K L. Active Oxygen/Oxidative Stress in Plant Metabolism. Rockville: American Society of Plant Physiologists, 1991: 13-25. [21] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 373-399. [22] Lindqvist T, Kenne L, Lindeke B. On the chemistry of the reaction between N-acetylcysteine and 4-[(4-ethoxyphenyl)imino]-2,5-cyclohexadien-l-one, a 4-ethoxyanailine metabolite formed during peroxidase reactions. Chemical Research in Toxicology, 1991, 4: 489-496. [23] Long S S, Cao Y L, Li Y L, et al . Metabolism of reactive oxygen species in the process of hypersensitive response of wheat to stripe rust. Journal of Northwest A & F University: Natural Sciences Edition, 2009, 37(11): 125-131. [24] Wang C F. Studies on Histology and Cytochemistry of Oxidative Burst during Wheat- Puccinia striiformis F.SP. Tritici Interaction[D]. Yangling: Northwest A & F University, 2008. [25] Zhang H C. Histological and Cytological Analyses of Adult Plant Resistance to Wheat Stripe Rust and Characterization of Non-host Resistances of Wheat to Uromyces Fabae[D]. Yangling: Northwest A & F University, 2012. [26] Patterson B D, Macrae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium (Ⅳ). Analytical Biochemistry, 1984, 139: 487-492. [27] Miguel A T, Jonathan D G, Jones J L. Reactive oxygen species signaling in response to pathogens. Plant Physiology, 2006, 141: 373-378. [28] Liu X M, Williams C E, Nemacheck J A, et al . Reactive oxygen species are involved in plant defense against Gall midge . Plant Physiology, 2010, 152: 985-999. [29] Wang Y, Liang J, Zhang X Y. Changes of active oxygen and related enzymes during the interaction of poplar and canker disease pathogen. Journal of Nanjing Forestry University: Natural Sciences Edition, 2008, 32(5): 41-46. [30] Lam E. Controlled cell death, plant survival and development. Nature Reviews in Molecular Cell Biology, 2004, 5: 305-315. [31] Van B F, Dat J F. Reactive oxygen species in plant cell death. Plant Physiology, 2006, 141: 384-390. [32] Hiroshi Y, Kazuki F, Hideyuki T, et al . Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection. Plant Molecular Biology, 2009, 70: 103-112. [33] Delledonne M, Zeier J. Signal interactions between nitric oxide and reactive oxygen inter mediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 13454-13459. [34] Chai H B, Doke N. Activation of the potential of potato leaf tissue to react hypersensitive to Phytophthora infestans cytospore germination fluid and the enhancement of this potential by calcium ions. Physiological and Molecular Plant Pathology, 1987, 30: 27. [35] Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissue to infection with an incompatible race of Phytophthora infestans and to the hyphal wall component. Physiological Plant Pathology, 1983, 23: 345. [36] Collendavelloo J, Legrand M, Fritig B. Plant disease and the regulation of enzymes involved in lignification-increased rate of de novo synthesis of the three tobacco O-Methyltransferases during the hypersensitive response to infection by tobacco mosaic virus. Plant Physiology, 1983, 73: 550-554. [1] 陈文新. 豆科植物根瘤菌固氮体系在西部大开发中的作用. 草地学报, 2004, 12(1): 12. [2] 石元春. 走出治沙与退耕中的误区. 草地学报, 2004, 12(2): 83-86. [3] 袁庆华. 我国苜蓿病害研究进展. 植物保护, 2007, 33(1): 6-10. [4] 刘若, 侯天爵. 我国北方豆科牧草真菌病害初步名录. 中国草地学报, 1984, 1: 56-61. [5] 南志标. 我国的苜蓿病害及其综合防治体系. 动物科学与动物医学, 2001, 18(4): M1-M4. [6] 吕新龙, 艾里, 殷启失, 等. 苜蓿霜霉病的调查研究. 甘肃农业大学学报, 1976, (3): 39-42. [7] 南志标. 锈病对紫花苜蓿营养成分的影响. 中国草原与牧草, 1985, 3(2): 33-36. [8] 耿华珠. 中国苜蓿[M]. 北京: 中国农业出版社, 1995: 114-130. [9] 侯天爵, 周淑清. 霜霉病对苜蓿幼苗生长和结瘤的影响. 中国草地, 1997, 2: 52-54. [10] 苏生昌, 王雪薇, 王纯利, 等. 苜蓿褐斑病在新疆的发生. 草业科学, 1997, 14(5): 31-33. [11] 袁庆华, 李向林, 张文淑. 苜蓿假盘菌及其生物学特性的研究. 植物保护, 2001, 27(1): 8-12. [16] 王利国, 李玲. 活性氧中间体和NO在植物抗病中的作用. 植物学通报, 2003, 20(3): 354-360. [17] 郭泽建, 李德葆. 活性氧与植物抗病性. 植物学报, 2000, 42(9): 881-891. [18] 孙大业, 郭艳林, 马文耕. 细胞信号转导[M]. 北京: 科学出版社, 1998: 245. [23] 龙书生, 曹远林, 李亚玲, 等. 小麦抗条锈病过敏性坏死反应中的活性氧代谢. 西北农林科技大学学报: 自然科学版, 2009, 37(11): 125-131. [24] 王晨芳. 小麦与条锈菌互作过程中活性氧迸发的组织学和细胞化学研究[D]. 杨凌: 西北农林科技大学, 2008. [25] 张宏昌. 小麦成株抗条锈病的组织学和细胞学研究及小麦非寄主抗蚕豆锈病的机理研究[D]. 杨凌: 西北农林科技大学, 2012. [29] 王媛, 梁军, 张星耀. 抗、感病杨树与溃疡病菌互作中活性氧及相关酶的动态. 南京林业大学学报: 自然科学版, 2008, 32(5): 41-46. |