[1] Duan H J, Cai X Q, Ruan X L, et al. Assessment of heavy metal pollution and its health risk of surface dusts from parks of Kaifeng, China. Environmental Science, 2015, 36(8): 2972-2980. 段海静,蔡晓强,阮心玲,等. 开封市公园地表灰尘重金属污染及健康风险. 环境科学, 2015, 36(8): 2972-2980. [2] Jia R Y, Zhu W Y, Li N, et al. Heavy metal contents and ecological risk assessment of soils and dust in urban parks of Xi’an City. Research of Soil and Water Conservation, 2015, 22(5): 316-320. 贾锐鱼,朱万勇,李楠,等. 西安市公园土壤及灰尘中重金属污染与生态风险评价. 水土保持研究, 2015, 22(5): 316-320. [3] Wu Z L, Zhou J, Hu B B, et al. Characteristics of heavy metal pollution in dust and soil of Tianjin City, North China. Chinese Journal of Ecology, 2013, 32(4): 1030-1037. 吴绽蕾,周俊,胡蓓蓓,等. 天津公园灰尘与土壤重金属污染特征. 生态学杂志, 2013, 32(4): 1030-1037. [4] Li H T, Dong R, Guan M Q. Physiological responses and differential resistance of four perennial flowering plants to cadmium stress. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(9): 196-202. 李红婷,董然,关梦茜. 镉胁迫下4种宿根花卉的生理生长响应及其抗性差异. 西北农业学报, 2014, 23(9): 196-202. [5] Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 2001, 161(1): 1135-1144. [6] Silva S A E, Techio V H, de Castro E M, et al. Reproductive, cellular, and anatomical alterations in Pistia stratiotes L. plants exposed to cadmium. Water, Air & Soil Pollution, 2013, 224(3): 1753-1753. [7] Tao Y M, Chen Y Z, Tan T, et al. Comparison of antioxidant responses to cadmium and lead in Bruguiera gymnorrhiza seedlings. Biologia Plantarum, 2012, 56(1): 149-152. [8] Tian S K, Lu L L, Yang X E, et al. Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biologia Plantarum, 2012, 56(2): 344-350. [9] Zhao M, Wang J, Shan W, et al. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell & Environment, 2013, 36(1): 30-51. [10] He Q, Hong K, Zou R, et al. The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. European Food Research and Technology, 2014, 238(1): 71-78. [11] Siboza X I, Bertling I, Odindo A O. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). Journal of Plant Physiology, 2014, 171(18): 1722-1731. [12] Sánchez-Romera B, Ruiz-Lozano J M, Li G, et al. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant, Cell & Environment, 2014, 37(4): 995-1008. [13] Ismail A, Riemann M, Nick P. The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany, 2012, 63(5): 2127-2139. [14] Yan Z, Li X, Chen J, et al. Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxicology and Environmental Safety, 2015, 113: 124-132. [15] Yan Z, Zhang W, Chen J, et al. Methyl jasmonate alleviates cadmium toxicity in Solanum nigrum by regulating metal uptake and antioxidative capacity. Biologia Plantarum, 2015, 59(2): 373-381. [16] Farooq M A, Gill R A, Islam F, et al. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Frontiers in Plant Science, 2016, 7: 468. [17] Chen J, Yan Z, Li X. Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicology and Environmental Safety, 2014, 104(5): 349-356. [18] Yan Z, Chen J, Li X. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicology and Environmental Safety, 2013, 98(3): 203-209. [19] Sheng H, Jian Z, Fei Y, et al. Effect of exogenous salicylic acid on manganese toxicity, mineral nutrients translocation and antioxidative system in polish wheat (Triticum polonicum L.). Acta Physiologiae Plantarum, 2015, 37(2): 1-11. [20] Mao J H, Yu Y T, Hu J G. Advances on seed vigor of maize. Journal of Maize Sciences, 2015, 23(3): 86-90. 毛笈华,于永涛,胡建广. 玉米种子活力研究进展. 玉米科学, 2015, 23(3): 86-90. [21] Hu J F, Chen J Z, Wang Y G, et al. Optimization of condition for improving sorghum seed vigor by high voltage electric field. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 253-259. 胡建芳,陈建中,王玉国,等. 优化高压电场处理提高高粱种子活力. 农业工程学报, 2015, 31(12): 253-259. [22] Fu D W, Wang L M, Ou L X, et al. Effect of high temperature on seed vigor of litchi. Guangdong Agricultural Sciences, 2014, 41(5): 89-91. 付丹文,王丽敏,欧良喜,等. 高温对荔枝种子活力的影响. 广东农业科学, 2014, 41(5): 89-91. [23] Munzuroglu O, Zengin F K. Effect of cadmium on germination, coleoptile and root growth of barley seeds in the presence of gibberellic acid and kinetin. Journal of Environmental Biology, 2006, 27(4): 671-677. [24] Khatamipour M, Piri E, Esmaeilian Y, et al. Toxic effect of cadmium on germination, seedling growth and proline content of milk thistle (Silybum marianum). Annals of Biological Research, 2011,(2): 527-532. [25] He J, Ren Y, Zhu C, et al. Effects of cadmium stress on seed germination, seedling growth and seed amylase activities in rice (Oryza sativa). Rice Science, 2008, 15(4): 319-325. [26] Cen H M, Peng L L, Yang X, et al. Effects of Cd2+ on the seed germination and seedling growth of Cynodon dactylon and Eremochloa ophiuroides. Acta Prataculturae Sinica, 2015, 24(5): 100-107. 岑画梦,彭玲莉,杨雪,等. Cd2+对狗牙根、假俭草种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 100-107. [27] Asgher M, Khan M I R, Anjum N A, et al. Minimizing toxicity of cadmium in plants-role of plant growth regulators. Protoplasma, 2015, 252(2): 399-413. [28] Xue Y, Wang W Y, Yao Q H, et al. Research progress of plants resistance to heavy metal Cd in soil. Ecology and Environmental Sciences, 2014, 23(3): 528-534. 薛永,王苑螈,姚泉洪,等. 植物对土壤重金属镉抗性的研究进展. 生态环境学报, 2014, 23(3): 528-534. [29] Siddiqui M M, Abbasi B H, Ahmad N, et al. Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicology and Industrial Health, 2014, 30(3): 238-249. [30] Hu K, Bai G, Li W, et al. Sulfur dioxide promotes germination and plays an antioxidant role in cadmium-stressed wheat seeds. Plant Growth Regulation, 2015, 75(1): 271-280. [31] Soares A M D S, Souza T F D, Jacinto T, et al. Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Brazilian Journal of Plant Physiology, 2010, 22(3): 151-158. [32] Franceschi V R, Grimes H D. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(15): 6745-6749. [33] Singh I, Shah K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry, 2014, 108: 57-66. [34] Fan L, Wang Q, Lv J, et al. Amelioration of postharvest chilling injury in cowpea (Vigna sinensis) by methyl jasmonate (MeJA) treatments. Scientia Horticulturae, 2016, 203: 95-101. [35] Sun H, Liu H G, Cui J J, et al. Effect of exogenous Gly on the growth and oxidative damage of alfalfa seedling under Cd stress. Chinese Journal of Eco-Agriculture, 2010, 18(5): 1022-1025. 孙弘,刘合刚,崔谨谨,等. 外源甘氨酸对镉胁迫下苜蓿幼苗生长和氧化损伤的影响. 中国生态农业学报, 2010, 18(5): 1022-1025. [36] Lin Y X, Gu X X, Tang H R. Characteristics and biological functions of glutathione reductase in plants. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(6): 534-542. 林源秀,顾欣昕,汤浩茹. 植物谷胱甘肽还原酶的生物学特性及功能. 中国生物化学与分子生物学报, 2013, 29(6): 534-542. [37] Maksymiec W, Krupa Z. Jasmonic acid and heavy metals in Arabidopsis plants-a similar physiological response to both stressors. Journal of Plant Physiology, 2002, 159(5): 509-515. [38] Piotrowska A, Bajguz A, Godlewska-y?kiewicz B, et al. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environmental and Experimental Botany, 2009, 66(3): 507-513. |