Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (2): 197-207.DOI: 10.11686/cyxb2016136
Previous Articles Next Articles
LUO Yong-Qing1, ZHAO Xue-Yong1, WANG Tao1, LI Yu-Qiang1, ZUO Xiao-An1, DING Jie-Ping2, 3
Received:
2016-03-29
Online:
2017-02-20
Published:
2017-02-20
LUO Yong-Qing, ZHAO Xue-Yong, WANG Tao, LI Yu-Qiang, ZUO Xiao-An, DING Jie-Ping. Plant root decomposition and its responses to biotic and abiotic factors[J]. Acta Prataculturae Sinica, 2017, 26(2): 197-207.
[1] Zheng J P, Guo Z L, Xu C Y, et al . Seasonal dynamics of litter accumulation in major forest communities on the northern slope of Changbai Mountain, Northeast China. Acta Ecologica Sinica, 2011, 31(15): 4299-4307. 郑金萍, 郭忠玲, 徐程扬, 等. 长白山北坡主要森林群落凋落物现存量月动态. 生态学报, 2011, 31(15): 4299-4307. [2] Liu W F, Fan H B, Huang R Z, et al . Impacts of different ecological restoration measures on litter production and its nutrient fluxes in red soil erosion region. Journal of Soil and Water Conservation, 2012, 26(1): 58-61. 刘文飞, 樊后保, 黄荣珍, 等. 红壤侵蚀区不同生态修复措施对凋落物量及其养分归还的影响. 水土保持学报, 2012, 26(1): 58-61. [3] Zhang J X, Liu Y Q, Wu C S, et al . Litterfall production and dynamics of its decomposition of Liquidambar formosana plantation. Acta Agriculturae Universitis Jiangxiensis, 2013, 35(6): 1187-1192. 章俊霞, 刘苑秋, 吴春生, 等. 枫香人工林凋落物的产量与分解动态. 江西农业大学学报, 2013, 35(6): 1187-1192. [4] Luo Y Q, Zhao X Y, Ding J P, et al . Dynamics of aboveground biomass and litters in different types of dunes under vegetation restoration processes in Horqin Sandy Land. Journal of Desert Research, 2016, 36(1): 78-84. 罗永清, 赵学勇, 丁杰萍, 等. 科尔沁沙地不同类型沙地植被恢复过程中地上生物量与凋落物量变化. 中国沙漠, 2016, 36(1): 78-84. [5] Wang X Y. Litter Decomposition and Nitrogen Distribution among 4 Habitat Gradients in Different Dunes in Horqin Sandy Land. Doctor’s Dissertation[D]. Beijing: University of Chinese Academy of Sciences, 2013. 王新源. 科尔沁沙地不同沙丘各生境梯度下凋落物物质周转与氮素再分配[D]. 北京: 中国科学院大学, 2013. [6] Huang G, Zhao X Y, Padilla F M, et al . Fine root dynamics and longevity of Artemisia halodendron reflect plant growth strategy in two contrasting habitats. Journal of Arid Environments, 2012, 79: 1-7. [7] Silver W L, Miya R K. Global patterns in root decomposition: Comparisons of climate and litter quality effects. Oecologia, 2001, 129(3): 407-419. [8] Zhang X J, Mei L, Wang Z Q, et al . Advances in studying fine root decomposition in forest. Chinese Bulletin of Botany, 2005, 22(2): 246-254. 张秀娟, 梅莉, 王政权, 等. 细根分解研究及其存在的问题. 植物学通报, 2005, 22(2): 246-254. [9] Wen D Z, Wei P. Dry mass loss and chemical changes of the decomposed fine roots in three China South Subtropical forests at Dinghushan. Chinese Journal of Ecology, 1998, 17(2): 1-6. 温达志, 魏平. 鼎湖山南亚热带森林细根分解干物质损失和元素动态. 生态学杂志, 1998, 17(2): 1-6. [10] Kätterer T, Bolinder M A, Andrén O, et al . Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agriculture, Ecosystems and Environment, 2011, 141(1): 184-192. [11] Usman S, Singh S P, Rawat Y S, et al . Fine root decomposition and nitrogen mineralization patterns in Quercus leucotrichophora and Pinus roxburghii forests in central Himalaya. Forest Ecology and Management, 2000, 131(1): 191-199. [12] Bolinder M A, Kätterer T, Andrén O, et al . Estimating carbon inputs to soil in forage-based crop rotations and modeling the effects on soil carbon dynamics in a Swedish long-term field experiment. Canadian Journal of Soil Science, 2012, 92(6): 821-833. [13] Chapin F S, Matson P M, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer-Verlag, 2002. [14] Robinson C H, Kirkham J B, Littlewood R. Decomposition of root mixture from high arctic plants: a microcosm study. Soil Biology and Biochemistry, 1999, 31(8): 1101-1108. [15] Zhang X J, Wu C, Mei L, et al . Root decomposition and nutrient release of Fraxinus manshurica and Larix gmelinii plantations. Chinese Journal of Applied Ecology, 2006, 17(8): 1370-1376. 张秀娟, 吴楚, 梅莉, 等. 水曲柳和落叶松人工林根系分解与养分释放. 应用生态学报, 2006, 17(8): 1370-1376. [16] Fahey T J, Hughes J W, Pu M, et al . Root decomposition and nutrient flux following whole-tree harvest of northern hardwood forest. Forest Science, 1988, 34(3): 744-768. [17] Arunachalam A, Pandey H N, Tripathi R S, et al . Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting. Forest Ecology and Management, 1996, 86(1): 141-150. [18] Yang L W, Li W H, Wu S T. Fine root decomposition and nitrogen mineralization of the primitive Korean pine and broadleaved forests as well as its secondary forests in the Changbaishan Mountains, northeastern China. Journal of Beijing Forestry University, 2007, 29(6): 11-15. 杨丽韫, 李文华, 吴松涛. 长白山原始红松阔叶林及其次生林细根分解动态和氮元素的变化. 北京林业大学学报, 2007, 29(6): 11-15. [19] Lin C F, Yang Y S, Chen G S, et al . Decomposition dynamics of fine roots of Cunninghamia lanceolata in Mid-subtropics. Journal of Subtropical Resources and Environment, 2008, 3(1): 15-23. 林成芳, 杨玉盛, 陈光水, 等. 杉木人工林细根分解和养分释放及化学组成变化. 亚热带资源与环境学报, 2008, 3(1): 15-23. [20] Li R H, Deng Q, Zhou G Y, et al . Effect of incubation starting time on litter decomposition rate in a subtropical forest in China. Chinese Journal of Plant Ecology, 2011, 35(7): 699-706. 李荣华, 邓琦, 周国逸, 等. 起始时间对亚热带森林凋落物分解速率的影响. 植物生态学报, 2011, 35(7): 699-706. [21] Mao R, Zeng D H, Li L J. Fresh root decomposition pattern of two contrasting tree species from temperate agroforestry systems: effects of root diameter and nitrogen enrichment of soil. Plant and Soil, 2011, 347(1/2): 115-123. [22] Kou L, Chen W, Zhang X, et al . Differential responses of needle and branch order-based root decay to nitrogen addition: dominant effects of acid-unhydrolyzable residue and microbial enzymes. Plant and Soil, 2015, 394(1/2): 315-327. [23] Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 1997, 79(3): 439-449. [24] Zhang D Q, Hui D F, Luo Y Q, et al . Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 2008, 1(2): 85-93. [25] Song X Z, Jiang H, Ma Y D, et al . Litter decomposition across climate zone in Eastern China: the integrated influence of climate and litter quality. Acta Ecologica Sinica, 2009, 29(10): 5219-5226. 宋新章, 江洪, 马元丹, 等. 中国东部气候带凋落物分解特征-气候和基质质量的综合影响. 生态学报, 2009, 29(10): 5219-5226. [26] Liu Q, Peng S L. Plant Litter Ecology[M]. Beijing: Science Press, 2010. 刘强, 彭少麟. 植物凋落物生态学[M]. 北京: 科学出版社, 2010. [27] Berg B. Litter decomposition and organic turnover in northern forest soils. Forest Ecology and Management, 2000, 133: 13-22. [28] Finzi A C, Schlesinger W H. Species control variation in litter decomposition in a pine forest exposed to elevated CO 2 . Global Change Biology, 2002, 8(12): 1217-1229. [29] Kemp P R, Reynolds J F, Virginia R A, et al . Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 2003, 53(1): 21-39. [30] Lin C F, Yang Y S, Chen G S, et al . Decomposition dynamics of roots of Schima superb in Mid-subtropics of Fujian, China. Journal of Subtropical Resources and Environment, 2012, 7(3): 8-13. 林成芳, 杨玉盛, 陈光水, 等. 木荷天然林根系分解和养分释放及化学组成变化. 亚热带资源与环境学报, 2012, 7(3): 8-13. [31] Chen H, Harmon M, Griffiths R P, et al . Effects of temperature and moisture on carbon respired from decomposing woody roots. Forest Ecology and Management, 2000, 138(1): 51-64. [32] Chen H, Harmon M, Griffiths R P. Decomposition and nitrogen release from decomposing woody roots in coniferous forests of the Pacific Northwest. Canadian Journal of Forest Research, 2001, 31(2): 246-260. [33] Yang Y S, Chen G S, Lin P, et al . Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica, 2003, 23(9): 1719-1730. 杨玉盛, 陈光水, 林鹏, 等. 格氏栲天然林与人工林细根生物量、季节动态和净生产力. 生态学报, 2003, 23(9): 1719-1730. [34] Ruess R W, Hendrick R L, Burton A J, et al . Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 2003, 73(4): 643-662. [35] Fan P P, Guo D L. Slow decomposition of lower order roots: a key mechanism of root carbon and nutrient retention in the soil. Oecologia, 2010, 163(2): 509-515. [36] Dornbush M E, Isenhart T M, Raich J W. Quantifying fine-root decomposition: an alternative to buried litterbags. Ecology, 2002, 83(11): 2985-2990. [37] Song S, Gu J C, Quan X K, et al . Fine-root decomposition of Fraxinus mandshurica and Larix gmlinii plantations. Chinese Journal of Plant Ecology, 2008, 32(6): 1227-1237. 宋森, 谷加存, 全先奎, 等. 水曲柳和兴安落叶松人工林细根分解研究. 植物生态学报, 2008, 32(6): 1227-1237. [38] Camiré C, Côté B, Brulotte S. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings: nitrogen and lignin control. Plant and Soil, 1991, 138(1): 123-132. [39] Langley J A, Dijkstra P, Drake B G, et al . Ectomycorrhizal colonization, biomass, and production in a regenerating scrub oak forest in response to elevated CO 2 . Ecosystems, 2003, 6(5): 424-430. [40] de Graaff M A, Six J, Jastrow J D, et al . Variation in root architecture among Switch grass cultivars impacts root decomposition rates. Soil Biology and Biochemistry, 2013, 58: 198-206. [41] Garrett L G, Kimberley M O, Oliver G R, et al . Decomposition of coarse woody roots and branches in managed Pinus radiata plantations in New Zealand-A time series approach. Forest Ecology and Management, 2012, 269: 116-123. [42] Cornwell W K, Cornelissen J H C, Amatangelo K, et al . Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11(10): 1065-1071. [43] Huxham M, Langat J, Tamooh F, et al . Decomposition of mangrove roots: effects of location, nutrients, species identity and mix in a Kenyan forest. Estuarine, Coastal and Shelf Science, 2010, 88(1): 135-142. [44] Santonja M, Fernandez C, Gauquelin T, et al . Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant and Soil, 2015, 393(1): 1-14. [45] Rong L, Li X W, Zhu T H, et al . Varieties of soil microorganisms decomposing Betula luminifera fine roots and Hemarthria compressa roots. Acta Prataculturae Sinica, 2009, 18(4): 117-124. 荣丽, 李贤伟, 朱天辉, 等. 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群. 草业学报, 2009, 18(4): 117-124. [46] Lemma B, Nilsson I, Kleja D B, et al . Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry, 2007, 39(9): 2317-2328. [47] Sanpera-Calbet I, Lecerf A, Chauvet E. Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshwater Biology, 2009, 54(8): 1671-1682. [48] Vos V C A, van Ruijven J, Berg M P, et al . Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia, 2013, 173(1): 269-280. [49] Hector A, Beale A J, Minns A, et al . Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos, 2000, 90(2): 357-371. [50] Hoorens B, Stroetenga M, Aerts R. Litter mixture interactions at the level of plant functional types are additive. Ecosystems, 2010, 13(1): 90-98. [51] Makkonen M, Berg M P, van Logtestijn R S P, et al . Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 2013, 122(7): 987-997. [52] Phillips R P, Finzi A C, Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO 2 fumigation. Ecology Letters, 2011, 14(2): 187-194. [53] Nardi S, Sessi E, Pizzeghello D, et al . Biological activity of soil organic matter mobilized by root exudates. Chemosphere, 2002, 46(7): 1075-1081. [54] Landi L, Valori F, Ascher J, et al . Root exudate effects on the bacterial communities, CO 2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry, 2006, 38(3): 509-516. [55] Gao Y Z, Ren L L, Ling W T, et al . Desorption of phenanthrene and pyrene in soils by root exudates. Bioresource Technology, 2010, 101(4): 1159-1165. [56] Sun T R, Cang L, Wang Q Y, et al . Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Journal of Hazardous Materials, 2010, 176(1): 919-925. [57] Toyama T, Furukawa T, Maeda N, et al . Accelerated biodegradation of pyrene and benzo[α]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Research, 2011, 45(4): 1629-1638. [58] Baudoin E, Benizri E, Guckert A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology and Biochemistry, 2003, 35(9): 1183-1192. [59] Técher D, Laval-Gilly P, Henry S, et al . Contribution of miscanthus×giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Science of the Total Environment, 2011, 409(20): 4489-4495. [60] Fischer S E, Miguel M J, Mori G B. Effect of root exudates on the exopolysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiology Letters, 2003, 219(1): 53-62. [61] Nagahashi G. Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi. Mycological Research, 2000, 104(12): 1453-1464. [62] Gadkar V, David-Schwartz R, Nagahashi G, et al . Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiology Letters, 2003, 223(2): 193-198. [63] Nagahashi G, Douds D Jr. Separated components of root exudate and cytosol stimulate different morphologically identifiable types of branching responses by arbuscular mycorrhizal fungi. Mycological Research, 2007, 111(4): 487-492. [64] Muhammad A K, Cheng Z H, Xiao X M, et al . Ultrastructural studies of the inhibition effect against phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Protection, 2011, 30(9): 1149-1155. [65] Luo Y Q, Zhao X Y, Li M X. Review of research in ecological effects of plant root exudates and related factors. Chinese Journal of Applied Ecology, 2012, 23(12): 3496-3504. 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述. 应用生态学报, 2012, 23(12): 3496-3504. [66] Sturz A V, Christie B R. Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 2003, 72(2): 107-123. [67] Zhao X L, Liu X H, He J Z, et al . Effects of cotton root exudates on available soil nutrition, enzyme activity and microorganism quantity. Acta Botanica Boreal-Occident Sinica, 2009, 29(7): 1426-1431. 赵小亮, 刘新虎, 贺江舟, 等. 棉花根系分泌物对土壤速效养分和酶活性及微生物数量的影响. 西北植物学报, 2009, 29(7): 1426-1431. [68] Wu C X, Fu H. Effects and roles of root exudates. Pratacultural Science, 2009, 26(9): 24-29. 吴彩霞, 傅华. 根系分泌物的作用及影响因素. 草业科学, 2009, 26(9): 24-29. [69] Luo Y Q, Zhao X Y, Andrén O, et al . Artificial root exudates and soil organic carbon mineralization in degraded sandy grassland in NE China. Journal of Arid Land, 2014, 6(4): 423-431. [70] Phillips R P, Meier I C, Bernhardt E S, et al . Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO 2 . Ecology Letters, 2012, 15(9): 1042-1049. [71] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. [72] Qian Y Q, Peng X Q, Zeng W J, et al . The effect of mycorrhizal fungi on soil respiration and litter decomposition. Microbiology China, 2013, 40(12): 2306-2318. 钱雨奇, 彭晓茜, 曾文静, 等. 菌根真菌对土壤呼吸以及凋落物分解的影响. 微生物学通报, 2013, 40(12): 2306-2318. [73] Gadgil R L, Gadgil P D. Mycorrhiza and litter decomposition. Nature, 1971, 233(5315): 133-135. [74] Cuenca G, Aranguren J, Herrera R. Root growth and litter decomposition in a coffee plantation under shade trees[M]//Atkinson D, Bhat K K S, Coutts M P, et al . Tree Root Systems and Their Mycorrhizas. Netherlands: Springer, 1983: 477-486. [75] Saderstriim B. Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiology Ecology, 1996, 21: 77-86. [76] Pigott C D. Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. The New Phytologist, 1982, 92(4): 513-517. [77] Fu S L, Cheng W X. Rhizosphere priming effects on the decomposition of soil organic matter in C 4 and C 3 grassland soils. Plant and Soil, 2002, 238(2): 289-294. [78] Querejeta J, Egerton-Warburton L M, Allen M F. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 2003, 134(1): 55-64. [79] Tu C, Booker F L, Watson D M, et al . Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biology, 2006, 12(5): 793-803. [80] Liu Y K. Research on the Relationship between Litter Decomposition and Ectomyxorrhizal Fungi[D]. Harbin: Heilongjiang University, 2010. 刘远开. 红松外生菌根真菌与凋落物分解相关性研究[D]. 哈尔滨: 黑龙江大学, 2010. [81] Pritsch K, Garbaye J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 2011, 68(1): 25-32. [82] Colpaert J V, Van Laere A. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. The New Phytologist, 1996, 134(1): 133-141. [83] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299. [84] Cheng L, Booker F L, Tu C, et al . Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO 2 . Science, 2012, 337(6098): 1084-1087. [85] Zhu B, Cheng W. Impacts of drying-wetting cycles on rhizosphere respiration and soil organic matter decomposition. Soil Biology and Biochemistry, 2013, 63: 89-96. [86] Steinberger Y, Degani R G B. Decomposition of root litter and related microbial population dynamics of a Negev Desert shrub, Zygophyllum dumosurn . Journal of Arid Environments, 1995, 31(4): 383-399. [87] Wang Q B, Li L H, Bai Y F, et al . Effect of stimulated climate change on the decomposition of mixed litter in three steppe communities. Chinese Journal of Plant Ecology, 2000, 24(6): 674-679. 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对 3 种草原植物群落混合凋落物分解的影响. 植物生态学报, 2000, 24(6): 674-679. [88] Chen Q S, Li L H, Han X G, et al . Effect of water content o soil respiration and the mechanisms. Acta Ecologica Sinica, 2003, 23(5): 972-978. 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理. 生态学报, 2003, 23(5): 972-978. [89] Li X B, Ma L, Chen L, et al . Research progress and the prospect of grassland litters decomposition. Ecology and Environmental Sciences, 2010, 19(9): 2260-2264. 李学斌, 马林, 陈林, 等. 草地枯落物分解研究进展及展望. 生态环境学报, 2010, 19(9): 2260-2264. [90] Andrén O, Kihara J, Bationo A, et al . Soil climate and decomposer activity in Sub-Saharan Africa estimated from standard weather station data: A simple climate index for soil carbon balance calculations. Ambio, 2007, 36(5): 379-386. [91] Qin Y, Wang L H, Zhang G S, et al . The analysis on the fine roots’ decomposition and influence factors of Sabina vulgaris and Artemisia ordosica communities in Muus Sandland. Journal of Arid Land Resources and Environment, 2008, 22(6): 181-185. 秦艳, 王林和, 张国盛, 等. 毛乌素沙地天然臭柏、油蒿群落细根分解及影响因子分析. 干旱区资源与环境, 2008, 22(6): 181-185. [92] Liu Y, Wang S L, Wang X W, et al . Effects of tree species fine root decomposition on soil active organic carbon. Chinese Journal of Applied Ecology, 2007, 18(3): 481-486. 刘艳, 汪思龙, 王晓伟, 等. 不同温度条件下杉木、桤木和火力楠细根分解对土壤活性有机碳的影响. 应用生态学报, 2007, 18(3): 481-486. [93] Wei Y Y, Wu Z C, Yang W Q, et al . Fine root decomposition dynamics during freeze-thaw season in the subalpine/alpine forests. Scientia Silvae Sinicae, 2013, 49(8): 21-28. 魏圆云, 武志超, 杨万勤, 等. 季节性冻融期亚高山/高山森林细根分解动态. 林业科学, 2013, 49(8): 21-28. [94] Bryant D M, Holland E A, Seastedt T R, et al . Analysis of litter decomposition in an alpine tundra. Canadian Journal of Botany, 1998, 76(7): 1295-1304. [95] Prescott C E. Does nitrogen availability control rates of litter decomposition in forests[M]// Nilsson L O. Nutrient Uptake and Cycling in Forest Ecosystems. Netherlands: Springer, 1995: 83-88. [96] Li X, Han S, Guo Z, et al . Changes in soil microbial biomass carbon and enzyme activities under elevated CO 2 affect fine root decomposition processes in a Mongolian oak ecosystem. Soil Biology and Biochemistry, 2010, 42(7): 1101-1107. [97] Viswanath T, Pal D, Purakayastha T J. Elevated CO 2 reduces rate of decomposition of rice and wheat residues in soil. Agriculture, Ecosystems and Environment, 2010, 139(4): 557-564. [98] Dilustro J J, Day F P, Drake B G. Effects of elevated atmospheric CO 2 on root decomposition in a scrub oak ecosystem. Global Change Biology, 2001, 7(5): 581-589. [99] Gorissen A, Cotrufo M F. Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO 2 and N supply. Plant and Soil, 2000, 224(1): 75-84. [100] Rønn R, Ekelund F, Christensen S. Effects of elevated atmospheric CO 2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant and Soil, 2003, 251(1): 13-21. [101] Tu L H, Chen G, Peng Y, et al . Response of fine root decomposition to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China. Chinese Journal of Applied Ecology, 2014, 25(8): 2176-2182. 涂利华, 陈刚, 彭勇, 等. 华西雨屏区苦竹细根分解对模拟氮沉降的响应. 应用生态学报, 2014, 25(8): 2176-2182. [102] Li J M, Zhang Y T, Li J G, et al . Effect of stimulated nitrogen deposition on the fine root decomposition and related nutrient release of Pice aschrenkiana var. tianshanica . Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1): 182-188. 李吉玫, 张毓涛, 李建贵, 等. 模拟氮沉降对天山云杉细根分解及其养分释放的影响. 西北植物学报, 2015, 35(1): 182-188. [103] Jani A D, Grossman J M, Smyth T J, et al . Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant and Soil, 2015, 393(1): 57-68. [104] Hunt H W. A simulation model for decomposition in grasslands. Ecology, 1977, 58(3): 469-484. [105] Gill R A, Burke I C, Milchunas D G, et al . Relationship between root biomass and soil organic matter pools in the short grass steppe of eastern Colorado: implications for decomposition through a soil profile. Ecosystems, 1999, 2(3): 226-236. [106] Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436. [107] Gill R A, Burke I C. Influence of soil depth on the decomposition of Bouteloua gracilis roots in the short grass steppe. Plant and Soil, 2002, 241(2): 233-242. [108] Sariyildiz T. Effects of tree species and topography on fine and small root decomposition rates of three common tree species ( Alnus glutinosa , Picea orientalis and Pinus sylvestris ) in Turkey. Forest Ecology and Management, 2015, 335(1): 71-86. [109] Sanaullah M, Chabbi A, Leifeld J, et al . Decomposition and stabilization of root litter in top-and subsoil horizons: what is the difference. Plant and Soil, 2011, 338(1/2):127-141. [110] Cai M, Dong Y J, Chen Z J, et al . Effects of nitrogen fertilizer on the composition of maize roots and their decomposition at different soil depths. European Journal of Soil Biology, 2015, 67: 43-50. [111] Li A, Fahey T J, Pawlowska T E, et al . Fine root decomposition, nutrient mobilization and fungal communities in a pine forest ecosystem. Soil Biology and Biochemistry, 2015, 83: 76-83. [112] Solley E F, Schöning I, Herold N, et al . No depth-dependence of fine root litter decomposition in temperate beech forest soils. Plant and Soil, 2015, 393(1): 273-282. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||