Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (4): 80-88.DOI: 10.11686/cyxb2016362

Previous Articles     Next Articles

Effects of cover cropping and organic fertilizer on soil nutrients in a pear orchard

SUN Ji-Ping1, 2, ZHANG Yu-Xing1, *, WU Zhao-Hui2, LI Ying-Li1, WANG Guo-Ying1, ZHANG Jiang-Hong1   

  1. 1.College of Horticulture, Hebei Agricultural University, Baoding 071001, China;
    2.Tobacco Research Institute, Henan Academy of Agricultural Science, Xuchang 461000, China
  • Received:2016-09-27 Online:2017-04-20 Published:2017-04-20

Abstract: To promote grass sward management in orchards in China, this paper discusses the effects of planting herbage species combined with the application of organic fertilizer on soil mineral composition in a high producing and efficient pear orchard. The ‘xueqing’ pear orchard with 4-year and 8-year old inter-row herbage ground cover located on the Jizhong Plain, Hebei, was compared with a neighbouring pear orchard using inter-row tillage to control vegetation. Stratified sampling was carried out in each 10 cm layer of 0-80 cm soil layers in all pear orchards. Soil organic matter and mineral element content in each soil layer were measured. The results showed that the available nutrient content was highest in the 0-50 cm soil layers after planting herbage. Compared to tillage a herbage regime of 4 years combined with the application of organic fertilizer, soil alkaline hydrolytic nitrogen, available P and Zn content in 0-10 cm layer and the available K and Fe in 0-20 cm layer were clearly higher. Eight years of managed herbage combined with the application of organic fertilizer resulted in significantly improved soil organic matter and alkaline hydrolytic nitrogen content in the 0-10 cm layer, available Mn and Fe in the 0-20 cm layer, available P and Cu in the 0-30 cm layer, available Zn in the 0-40 cm layer and available K in the 0-50 cm layer. However soil pH was reduced. After 8 years of herbage management and application of organic fertilizer the available P, K and Zn in the 0-50 cm soil layer accounted for 92%, 82% and 88% of the 0-80 cm soil layer, respectively; soil fertility was improved and negative environmental effects such as nutrient losses reduced, improving the overall sustainability of the production system.