[1] Lodwig E, Poole P. Metabolism of Rhizobium bacteroids. Critical Reviews in Plant Sciences, 2003, 22(1): 37-78. [2] Parniske M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2004, 7(4): 414-421. [3] Nan Z B, Li C J. Roles of the grass- Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. 南志标, 李春杰. 禾草内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. [4] Young C A, Hume D E, Mcculley R L. Forages and pastures symposium: Fungal endophytes of tall fescue and perennial ryegrass: Pasture friend or foe. Journal of Animal Science, 2013, 91(5): 2379-2394. [5] Johnson L J, Bonth A C M, Briggs L R, et al . The exploitation of Epichloae endophytes for agricultural benefit. Fungal Diversity, 2013, 60(1): 171-188. [6] Schardl C L, Young C A, Hesse U, et al . Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the Clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet, 2013, 9: e1003323. [7] Siegel M R, Bush L P. Toxin production in grass/endophyte associations[M]//Carroll G C, Tudzynski P. The Mycota V. Plant Relationships, Part B. Berlin: Heidelberg Springer, 1997: 185-208. [8] Bush L P, Wilkinson H H, Schardl C L. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 1997, 114(1): 1-7. [9] Prestidge R A. Causes and control of perennial ryegrass staggers in New Zealand. Agriculture, Ecosystems & Environment, 1993, 44(1): 283-300. [10] Faeth S H, Bush L P, Sullivan T J. Peramine alkaloid variation in Neotyphodium -infected Arizona fescue: effects of endophyte and host genotype and environment. Journal Chemical Ecology, 2002, 28(8): 1511-1526. [11] Latch G C M. Physiological interactions of endophytic fungi and their hosts. Biotic stress tolerance imparted to grasses by endophytes. Agriculture, Ecosystems & Environment, 1993, 44(1): 143-156. [12] Nan Z B, Li C J. Neotyphodium in native grasses in China and observations on endophyte/host interactions[C]//Paul V H, Dapprich P D. Proceedings of 4th International Neotyphodium /Grass Interactions Symposium. Soest, 2000: 41-55. [13] Tian P, Nan Z, Li C, et al . Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. European Journal of Plant Pathology, 2008, 122(4): 593-602. [14] Duan Q Q, Yang X H, Huang X Z. Signal exchange between plants and arbuscular mycorrhizae fungi during the early stage of symbiosis-A review. Acta Microbiologica Sinica, 2015, 55(7): 819-825. 段倩倩, 杨晓红, 黄先智. 植物与丛枝菌根真菌在共生早期的信号交流. 微生物学报, 2015, 55(7): 819-825. [15] Rodriguez R J, White J F, Arnold A E, et al . Fungal endophytes: diversity and functional roles. New Phytologist, 2009, 182(2): 314-330. [16] White J F. Endophyte-host associations in forage grasses. XI. A proposal concerning origin and evolution. Mycologia, 1988, 80: 442-446. [17] Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 2002, 160(s4): S99-S127. [18] White J F, Martin T I, Cabral D. Endophyte-host associations in grasses. XXII. Conidia formation by Acremonium endophytes on the phylloplanes of Agrostis hiemalis and Poa rigidifolia . Mycologia, 1996, 88: 174-178. [19] Moy M, Belanger F, Duncan R, et al . Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis, 2000, 28(4): 291-302. [20] Dugan F, Sitton J, Sullivan R, et al . The Neotyphodium endophyte of wild barley ( Hordeum brevisubulatum subsp. violaceum) grows and sporulates on leaf surfaces of the host. Symbiosis, 2002, 32: 147-160. [21] Christensen M J, Zhang X W, Scott B. Regulation switching of Epichloё typhina within elongating perennial ryegrass leaves. Mycological Research, 2008, 112(9): 1056-1062. [22] Christensen M J, Bennett R J, Schmid J. Growth of Epichloё / Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycological Research, 2002, 106(1): 93-106. [23] Christensen M J, Bennett R J, Schmid J. Vascular bundle colonisation by Neotyphodium endophytes in natural and novel associations with grasses. Mycological Research, 2001, 105(10): 1239-1245. [24] Christensen M J, Bennett R J, Ansari H A, et al . Epichloё endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genetics and Biology, 2008, 45(2): 84-93. [25] Christensen M J, Saulsbury K, Simpson W R. Conspicuous epiphytic growth of an interspecific hybrid Neotyphodium sp. endophyte on distorted host inflorescences. Fungal Biology, 2012, 116(1): 42-48. [26] Christensen M, Voisey C. The biology of the endophyte/grass partnership[C]//Proceeding of 6th International Symposium on Fungal Endophytes of Grasses. Christchurch, New Zealand: New Zealand Grassland Association, 2007: 123-133. [27] Voisey C R. Intercalary growth in hyphae of filamentous fungi. Fungal Biology Reviews, 2010, 24(3): 123-131. [28] Tan Y Y, Spiering M J, Scott V, et al . In Planta regulation of extension of an endophytic fungus and maintenance of high metabolic rates in its mycelium in the absence of apical extension. Applied and Environental Microbiology, 2001, 67(12): 5377-5383. [29] Christensen M J, Ball O J P, Bennett R J, et al . Fungal and host genotype effects on compatibility and vascular colonization by Epichloё festucae . Mycological Research, 1997, 101: 493-501. [30] Scott B, Becker Y, Becker M, et al . Morphogenesis, growth, and development of the grass symbiont Epichloё festucae [M]//Morphogenesis and Pathogenicity in Fungi. Springer, 2012: 243-264. [31] Eaton C J, Cox M P, Ambrose B, et al . Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis. Plant Physiology, 2010, 153: 1780-1994. [32] Becker M, Becker Y, Green K, et al . The endophytic symbiont Epichloё festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytologist, 2016, doi:10.1111/nph.13931. [33] Tanaka A, Christensen M J, Takemoto D, et al . Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell, 2006, 18(4): 1052-1066. [34] Scott B, Eaton C J. Role of reactive oxygen species in fungal cellular differentiations. Current opinion in microbiology, 2008, 11(6): 488-493. [35] Tanaka A, Takemoto D, Hyon G S, et al . NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloe festucae and perennial ryegrass. Molecular Microbiology, 2008, 68(5): 1165-1178. [36] Takemoto D, Tanaka A, Kayano Y, et al . Reactive oxygen as a signal in grass- Epichloё symbiosis[C]//Epichloae, endophytes of cool season grasses: implications, utilization and biology. Proceedings of the 7th International Symposium on Fungal Endophytes of Grasses. Lexington, Kentucky, USA: Samuel Roberts Noble Foundation, 2012: 109-112. [37] Takemoto D, Kamakura S, Saikia S, et al . Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proceedings of the National Academy of Sciences, 2011, 108(7): 2861-2866. [38] Eaton C J. Investigation of Signalling Involved in Maintaining the Mutually Beneficial Association between Epichloё festucae and Perennial Ryegrass[D]. Palmerston North, New Zealand: Massey University, 2009. [39] Lardy B, Bof M, Aubry L, et al . NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum . Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2005, 1744(2): 199-212. [40] Mori I C, Schroeder J I. Reactive oxygen species activation of plant Ca 2+ channels: A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiology, 2004, 135(2): 702-708. [41] Zhai Z H, Wang X Z, Ding M X. Cell Biology[M]. Beijing: Higher Education Press, 2000. 翟中和, 王喜忠, 丁明孝. 细胞生物学[M]. 北京: 高等教育出版社, 2000. [42] Yang Y, Cheng P, Zhi G, et al . Identification of a calcium/calmodulin-dependent protein kinase that phosphorylates the Neurospora circadian clock protein FREQUENCY. Journal of Biological Chemistry, 2001, 276(44): 41064-41072. [43] Mitiĉ M. Investigation of the Molecular Basis of Symbiosis between Epichloё festucae and Perennial Ryegrass[D]. Palmerston North, New Zealand: Massey University, 2011. [44] Kobayashi M, Ohura I, Kawakita K, et al . Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell, 2007, 19(3): 1065-1080. [45] D’souza C A, Heitman J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiology Reviews, 2001, 25(3): 349-364. [46] Voisey C, Christensen M, Johnson R, et al . The role of cAMP signalling in the symbiosis between Epichloe festucae and Lolium perenne [C]//Proceedings of the Sixth International Symposium on Fungal Endophytes of Grasses Grasslands Research and Practice. Series, 2007, (13): 457-459. [47] Fan Y S, Liu Y C, Gu S Q, et al . Mitogen activated protein kniase genes and its functions in phytopathogenic fungus. Acta Microbiologia Sinica, 2004, 44(4): 547-551. 范永山, 刘颖超, 谷守芹, 等. 植物病原真菌的MAPK基因及其功能. 微生物学报, 2004, 44(4): 547-551. [48] Xu J R. MAP kinases in fungal pathogens. Fungal Genetics and Biology, 2000, 31(3): 137-152. [49] Gustin M C, Albertyn J, Alexander M, et al . MAP kinase pathways in the yeast Saccharomyces cerevisiae . Microbiology and Molecular Biology Reviews, 1998, 62(4): 1264-1300. [50] Keleta T, Green R, Bussey H. Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. Journal of Bacteriology, 1999, 181(11): 3330-3340. [51] Becker Y, Eaton C J, Brasell E, et al . The fungal cell-wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloё festucae in symbiosis with Lolium perenne . Molecular Plant-Microbe Interactions, 2015, 28(1): 69-85. [52] Takemoto D, Tanaka A, Scott B. A p67 Phox -like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. Plant Cell, 2006, 18(10): 2807-2821. [53] Johnson L J, Koulman A, Christensen M, et al . An extracellular siderophore is required to maintain the mutualistic interaction of Epichloё festucae with Lolium perenne . PLoS Pathogens, 2013, 9(5): e1003332. [54] Lukito Y, Chujo T, Scott B. Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloё festucae . Fungal Genetics and Biology, 2015, 85(1): 25-37. [55] Charlton N D, Shoji J-Y, Ghimire S R, et al . Deletion of the fungal gene soft disrupts mutualistic symbiosis between the grass endophyte Epichloё festucae and the host plant. Eukaryotic Cell, 2012, 11(12): 1463-1471. [56] Chujo T, Scott B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Molecular Microbiology, 2014, 92(2): 413-434. [57] Tanaka A, Cartwright G M, Saikia S, et al . ProA, a transcriptional regulator of fungal fruiting body development, regulates leaf hyphal network development in the Epichloё festucae - Lolium perenne symbiosis. Molecular Microbiology, 2013, 90(3): 551-568. [58] Beard J L, Dawson H, Piñero D J. Iron metabolism: a comprehensive review. Nutrition Reviews, 1996, 54(10): 295-317. [59] Dupont P Y, Eaton C J, Wargent J J, et al . Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 2015, 208(4): 1227-1240. [60] Eaton C J, Dupont P-Y, Solomon P, et al . A core gene set describes the molecular basis of mutualism and antagonism in Epichloё spp. Molecular Plant-Microbe Interactions, 2015, 28(3): 218-231. [61] Zhang N, Zhang S, Borchert S, et al . High levels of a fungal superoxide dismutase and increased concentration of a PR-10 plant protein in associations between the endophytic fungus Neotyphodium lolii and ryegrass. Molecular Plant-Microbe Interactions, 2011, 24(8): 984-992. |