[1] Thomas C D, Alison C, Green R E, et al . Extinction risk from climate change. Nature, 2004, 427: 145-148. [2] Bertrand R, Perez V, Gégout J C. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology, 2012, 18: 2648-2660. [3] Huntley B, Green R E, Collingham Y C, et al . The performance of models relating species geographical distributions to climate is independent of trophic level.Ecology Letters, 2004, 7(5): 417-426. [4] Burns C E, Johnston K M, Schmitz O J. Global climate change and mammalian species diversity in U.S. national parks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20): 11474-11477. [5] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modeling, 2006, 190(3/4): 231-259. [6] Xing D L, Hao Z Q. The principle of maximum entropy and its applications in ecology. Biodiversity Science, 2011, 19(3): 295-302. 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用. 生物多样性, 2011, 19(3): 295-302. [7] Guo Y L, Wei H Y, Lu C Y, et al .Predictions of potential geographical distribution of Sinopodophyllum hexandrum under climate change. Chinese Journal of Plant Ecology, 2014, 38(3): 249-261. 郭彦龙, 卫海燕, 路春燕, 等. 气候变化下桃儿七潜在地理分布的预测. 植物生态学报, 2014, 38(3): 249-261. [8] Gao B, Wei H Y, Guo Y L, et al . Using GIS and MaxEnt to analyze the potential distribution of Abies chensiensis . Chinese Journal of Ecology, 2015, 34(3): 843-852. 高蓓, 卫海燕, 郭彦龙, 等. 应用GIS和最大熵模型分析秦岭冷杉潜在地理分布. 生态学杂志, 2015, 34(3): 843-852. [9] Li M Y, Xi Q, Xu H G. Evaluation of potential habitat for white-headed Langur based on WEB dataset and Maxent model.Forest Resources Management, 2010, (4): 31-36. 李明阳, 席庆, 徐海根. 基于WEB数据库和Maxent模型的白头叶猴潜在生境评价研究. 林业资源管理, 2010, (4): 31-36. [10] Feng Y L, Jiang S M, Shao X. The effect of root system temperature on growth and photosynthetic characteristics in Amaranthus tricolor . Bulletin of Botanical Research, 2000, 20(2): 180-185. 冯玉龙, 姜淑梅, 邵侠. 根系温度对苋菜生长及光合特性的影响. 植物研究, 2000, 20(2): 180-185. [11] Liang F, Zhou X Z, Cao L. Investigation on Vitex trifolia L.var. simplicifolia Cham. medicinal plant resources in China.Journal of Anhui Agricultural Sciences, 2011, 39(35): 21638-21640. 梁芳, 周香珍, 曹岚. 我国单叶蔓荆药用植物资源调查. 安徽农业科学, 2011, 39(35): 21638-21640. [12] Fang S M, Fan G W, Yao J L, et al . Research progress in study on chemical constituents and pharmacological effects of Viticis fructus . Chinese Traditional and Herbal Drugs, 2015, 46(24): 3757-3765. 房士明, 樊官伟, 姚进龙, 等. 蔓荆的化学成分及药理活性研究进展. 中草药, 2015, 46(24): 3757-3765. [13] Rana V S, Dayal R. Chemical constituents of Vitex negundo bark. Journal of Medicinal & Aromatic Plant Sciences, 2006, 28(1): 43-44. [14] Rodríguez-López V, Figueroa-Suárez M Z, Rodríguez T, et al . Insecticidal activity of Vitex mollis . Fitoterapia, 2007, 78(1): 37-39. [15] Liu H Y. Determination of the content of flavin in Vitex trifolia from different origins in Shandong HPLC. Journal of Traditional Chinese Medicine, 2010, (3): 198-199. 刘红燕. HPLC测定山东不同产地单叶蔓荆子中蔓荆子黄素的含量. 山东中医杂志, 2010, (3): 198-199. [16] Liu X F, Yang C Z, Wang H S. Analysis of the volatile oil from the wild Vitex viticis in Fujian by gas chromatography-mass spectrometry. Journal of Fujian College of Traditional Chinese Medicine, 2011, 21(3): 46-48. 刘小芬, 杨成梓, 王河山. 福建野生单叶蔓荆子挥发油的气相-质谱分析. 福建中医药大学学报, 2011, 21(3): 46-48. [17] Hijmans R J, Cameron S E, Parra J L, et al . Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25(15): 1965-1978. [18] Wu J G, Lv J J. Potential effects of climate change on the distributions of giant panda ( Ailuropoda melanoleuca ) in China.Environmental Science & Technology, 2009, 32(12): 168-177. 吴建国, 吕佳佳. 气候变化对大熊猫分布的潜在影响. 环境科学与技术, 2009, 32(12): 168-177. [19] Zhai T Q, Li X H. Climate change induced potential range shift of the Crested ibis based on ensemble models. Acta Ecologica Sinica, 2012, 32(8): 2361-2370. 翟天庆, 李欣海. 用组合模型综合比较的方法分析气候变化对朱鹮潜在生境的影响. 生态学报, 2012, 32(8): 2361-2370. [20] Xin X G, Wu T W, Zhang J. Introduction of CMIP5 experiments carried out by BCC climate system model. Advances in Climate Change Research, 2012, 8(5): 378-382. 辛晓歌, 吴统文, 张洁. BCC气候系统模式开展的CMIP5试验介绍. 气候变化研究进展, 2012, 8(5): 378-382. [21] Kumar S K, Lee J H, Lahuerta J J, et al . Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia, 2012, 26(1): 149-157. [22] Wisz M S, Hijmans R J, Li J, et al . Effects of sample size on the performance of species distribution models. Diversity & Distributions, 2008, 14(5): 763-773. [23] Lu C Y, Gu W, Dai A H, et al . Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera , Rehd. et Wils. in Qinling Mountains, China. Ecological Modelling, 2012, 242(3): 105-115. [24] Hu L L, Zhang H Y, Qin L, et al . Current distribution of Schisandra chinensis in China and its predicted responses to climate change.Chinese Journal of Applied Ecology, 2012, 23(9): 2445-2450. 胡理乐, 张海英, 秦岭, 等. 中国五味子分布范围及气候变化影响预测. 应用生态学报, 2012, 23(9): 2445-2450. [25] Guo Y L, Gu W, Lu C Y, et al . Deoxyschizandrin and γ-schizandrin content in wild Schisandra sphenanthera to determine potential distribution in Qinling. Bulletin of Botany, 2013, 48(4): 411-422. 郭彦龙, 顾蔚, 路春燕, 等. 基于五味子甲素与乙素的秦岭地区野生华中五味子的潜在空间分布. 植物学报, 2013, 48(4): 411-422. [26] Cui J L, Wei H Y, Sang M J, et al . Prediction of potential distribution of blueberry based on maximum entropy model. Shandong Agricultural Sciences, 2015, (9): 36-41. 崔晋亮, 卫海燕, 桑满杰, 等. 基于最大熵模型的蓝莓潜在分布区预测. 山东农业科学, 2015, (9): 36-41. [27] Wang Y S, Xie B Y, Wan F H, et al . Application of ROC curve analysis in evaluating the performance of alien species potential distribution models. Biodiversity Science, 2007, 15(4): 365-372. 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 2007, 15(4): 365-372. [28] Fielding A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 1997, 24(24): 38-49. |