[1] D’Odorico P, Bhattachan A, Davis K F, et al . Global desertification: drivers and feedbacks. Advances in Water Resources, 2013, 51: 326-344. [2] Bestelmeyer B T, Okin G S, Duniway M C, et al . Desertification, land use, and the transformation of global drylands. Frontiers in Ecology and the Environment, 2015, 13(1): 28-36. [3] Zhao H L, Li J, Liu R T, et al . Effects of desertification on temporal and spatial distribution of soil macro-arthropods in Horqin sandy grassland, Inner Mongolia. Geoderma, 2014, 223: 62-67. [4] Xiang S, Guo R, Wu N, et al . Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau. Ecological Engineering, 2009, 35(4): 553-562. [5] Li J, Wang W, Hu G, et al . Changes in ecosystem service values in Zoige Plateau, China. Agriculture, Ecosystems & Environment, 2010, 139(4): 766-770. [6] Dong Z, Hu G, Yan C, et al . Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2010, 59(8): 1731-1740. [7] Liu J, Chen C, Qin N S, et al . Response of water resources to climate change in Zoige, Tibetan Plateau. Journal of Glaciology and Geocryology, 2016, 38(2): 498-508. 刘佳, 陈超, 秦宁生, 等. 青藏高原若尔盖生态区水资源对气候变化的响应. 冰川冻土, 2016, 38(2): 498-508. [8] Titus J H, Nowak R S, Smith S D. Soil resource heterogeneity in the Mojave Desert. Journal of Arid Environments, 2002, 52(3): 269-292. [9] Thompson D B, Walker L R, Landau F H, et al . The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. Journal of Arid Environments, 2005, 61(4): 609-629. [10] McClaran M P, Moore-Kucera J, Martens D A, et al . Soil carbon and nitrogen in relation to shrub size and death in a semi-arid grassland. Geoderma, 2008, 145(1): 60-68. [11] Wu X D, Song N P, Pan J. Effect of shrub ( Caragana intermedia ) encroachment under different sandy habitats on content and distribution of soil organic carbon in desert grassland. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 115-121. 吴旭东, 宋乃平, 潘军. 不同沙地生境下柠条灌丛化对草地土壤有机碳含量及分布的影响. 农业工程学报, 2016, 32(10): 115-121. [12] Tan B, Wu F, Yang W, et al . Seasonal dynamics of soil fauna in the subalpine and alpine forests of west Sichuan at different altitudes. Acta Ecologica Sinica, 2013, 33(1): 12-22. [13] Miao R, Jiang D, Musa A, et al . Effectiveness of shrub planting and grazing exclusion on degraded sandy grassland restoration in Horqin sandy land in Inner Mongolia. Ecological Engineering, 2015, 74: 164-173. [14] Huang G, Zhao X Y, Li Y Q, et al . Restoration of shrub communities elevates organic carbon in arid soils of northwestern China. Soil Biology and Biochemistry, 2012, 47: 123-132. [15] Rolo V, Amat B, Cortina J. Water availability and species identity control shrub colonization in abandoned semiarid steppes. Agriculture, Ecosystems & Environment, 2016, 228: 62-69. [16] Richardson A E, Barea J M, McNeill A M, et al . Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 2009, 321(1): 305-339. [17] Godwin D C, Jones C A. Modeling Plant and Soil Systems[M]. Madison: American Society of Agronomy Monograph, 1991: 287-321. [18] Rong Q, Liu J, Cai Y, et al . “Fertile island” effects of Tamarix chinensis Lour. on soil N and P stoichiometry in the coastal wetland of Laizhou Bay, China. Journal of Soils and Sediments, 2016, 16(3): 864-877. [19] Yang J H, Wang C L, Dai H L. Soil Chemical Analysis and Environmental Monitoring[M]. Beijing: China Earth Press, 2008: 18-79. 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 18-79. [20] Chen H Y, Shang Z Y, Fu H, et al . Soil microbial biomass and activity under desert shrub canopies. Acta Prataculturae Sinica, 2015, 24(2): 70-76. 陈鸿洋, 尚振艳, 傅华, 等. 荒漠区不同大小灌丛周围土壤微生物生物量及活性特征. 草业学报, 2015, 24(2): 70-76. [21] Jirkū V, Kodešová R, Nikodem A, et al . Temporal variability of structure and hydraulic properties of topsoil of three soil types. Geoderma, 2013, 204: 43-58. [22] Dong C, Tan Q, Huang G H, et al . A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties. Hydrology and Earth System Sciences, 2014, 18(5): 1793-1803. [23] Yang Z P, Zhang Q, Wang Y L, et al . Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China. Journal of Arid Environments, 2011, 75(6): 538-544. [24] Kieft T L, White C S, Loftin S R, et al . Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology, 1998, 79(2): 671-683. [25] Wezel A, Rajot J L, Herbrig C. Influence of shrubs on soil characteristics and their function in Sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 2000, 44(4): 383-398. [26] Aguiar M R, Sala O E. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology & Evolution, 1999, 14(7): 273-277. [27] Herbst M, Diekkrüger B, Vanderborght J. Numerical experiments on the sensitivity of runoff generation to the spatial variation of soil hydraulic properties. Journal of Hydrology, 2006, 326(1): 43-58. [28] Elbasiouny H, Abowaly M, Abu_Alkheir A, et al . Spatial variation of soil carbon and nitrogen pools by using ordinary Kriging method in an area of north Nile Delta, Egypt. Catena, 2014, 113: 70-78. [29] Li J, Zhao C, Zhu H, et al . Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments, 2007, 71(4): 350-361. [30] Shumway S W. Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia, 2000, 124(1): 138-148. [31] Wheeler C W, Archer S R, Asner G P, et al . Climatic/edaphic controls on soil carbon/nitrogen response to shrub encroachment in desert grassland. Ecological Applications, 2007, 17(7): 1911-1928. |