Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (7): 201-212.DOI: 10.11686/cyxb2016342
Previous Articles Next Articles
MA Zhou-Wen1, WANG Ying-Xin1, WANG Hong2, A Bu-Man3, ZHANG Zhen-Ming3, HOU Fu-Jiang1, *
Received:
2016-09-07
Online:
2017-07-20
Published:
2017-07-20
MA Zhou-Wen, WANG Ying-Xin, WANG Hong, A Bu-Man, ZHANG Zhen-Ming, HOU Fu-Jiang. Litter and its functions in grazing ecosystems[J]. Acta Prataculturae Sinica, 2017, 26(7): 201-212.
[1] Hou F J, Yang Z Y. Effects of grazing of livestock on grassland. Acta Ecologica Sinica, 2006, 26(1): 244-264. 侯扶江, 杨中艺. 放牧对草地的作用. 生态学报, 2006, 26(1): 244-264. [2] Harrop-Archibald H, Didham R K, Standish R J, et al . Mechanisms linking fungal conditioning of leaf litter to detritivore feeding activity. Soil Biology & Biochemistry, 2016, 93: 119-130. [3] Bradford M A, Berg B, Maynard D S, et al . Understanding the dominant controls on litter decomposition. Journal of Ecology, 2016, 104(1): 229-238. [4] Hulvey K B, Aigner P A. Using filter-based community assembly models to improve restoration outcomes. Journal of Applied Ecology, 2014, 51(4): 997-1005. [5] Iii B V I, Heneghan L, Rijal D, et al . Below-ground causes and consequences of woodland shrub invasions: a novel paired-point framework reveals new insights. Journal of Applied Ecology, 2015, 52(1): 78-88. [6] Carrera A L, Bertiller M B. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands. Journal of Environmental Management, 2013, 114(2): 505-511. [7] Bertiller M B, Carrera A L. Aboveground vegetation and perennial grass seed bank in arid rangelands disturbed by grazing. Rangeland Ecology & Management, 2015, 68(1): 71-78. [8] Marcos M S, Bertiller M B, Cisneros H S, et al . Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte. Pedobiologia, 2015, 59(1/2): 1-10. [9] Mancilla-Leytón J M, Sánchez-Lineros V, Vicente A M. Influence of grazing on the decomposition of Pinus pinea L. needles in a silvopastoral system in Doñana, Spain. Plant & Soil, 2013, 373(1/2): 173-181. [10] Li L, Hou F J. Economic analysis of animal production in China. Acta Prataculturae Sinica, 2016, 25(1): 230-239. 李岚, 侯扶江. 我国动物生产的经济分析. 草业学报, 2016, 25(1): 230-239. [11] Bonan G B, Hartman M D, Parton W J, et al . Evaluating litter decomposition in earth system models with long-term litterbag experiments: An example using the Community Land Model version 4 (CLM4). Global Change Biology, 2013, 19(3): 957-974. [12] Keiluweit M, Nico P, Harmon M E, et al . Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences, 2015, 112(38): 5253-5260. [13] Schmalholz M, Granath G. Effects of microhabitat and growth form on bryophyte mortality associated with leaf litter burial in a boreal spruce forest. Journal of Vegetation Science, 2014, 25(2): 439-446. [14] Soong J L, Cotrufo M F. Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Global Change Biology, 2014, 21(6): 2321-2333. [15] Verbruggen E, Jansa J, Hammer E C, et al . Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil. Journal of Ecology, 2015, 104(1): 261-269. [16] Wang D, Liu Y, Shang Z H, et al . Effects of grassland conversion from cropland on soil respiration on the semi-arid Loess Plateau, China. Clean-Soil Air Water, 2015, 43(7): 1052-1057. [17] Sun L, Zhang G H, Liu F, et al . Effects of incorporated plant litter on soil resistance to flowing water erosion in the Loess Plateau of China. Biosystems Engineering, 2016, 147: 238-247. [18] Luo C, Xu G, Chao Z, et al . Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Global Change Biology, 2010, 16(5): 1606-1617. [19] Hawlena D, Strickland M S, Bradford M A, et al . Fear of predation slows plant-litter decomposition. Science, 2012, 336(6087): 1434-1438. [20] Meier C L, Bowman W D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19780-19785. [21] Zhang L, Zhang Y J, Zou J W, et al . Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect. Scientific Reports, 2014, 4: 5488. [22] Chen Y, Sun J, Xie F, et al . Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet. Scientific Reports, 2015, 5: 17664. [23] Hou F J, Chang S H, Yu Y W, et al . A review on trampling by grazed livestock. Acta Ecologica Sinica, 2004, 24(4): 784-789. 侯扶江, 常生华, 于应文, 等. 放牧家畜的践踏作用研究评述. 生态学报, 2004, 24(4): 784-789. [24] Xiao X P, Song N P, Wang X, et al . Effects of grazing disturbance to the soil and vegetation of Desert Grassland. Soil and Water Conservation in China, 2013, 12: 19-23. 肖绪培, 宋乃平, 王兴, 等. 放牧干扰对荒漠草原土壤和植被的影响. 中国水土保持, 2013, 12: 19-23. [25] Olofsson J, Oksanen L. Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment. Oikos, 2002, 96(3): 507-515. [26] Facelli J M, Pickett S T A. Plant litter: Its dynamics and effects on plant community structure. Botanical Review, 1991, 57(1): 2-7. [27] Carrera A L, Bertiller M B, Larreguy C. Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant & Soil, 2008, 311(1/2): 39-50. [28] Hiltbrunner D, Schulze S, Hagedorn F, et al . Cattle trampling alters soil properties and changes soil microbial communities in a Swiss sub-alpine pasture. Geoderma, 2012, 170: 369-377. [29] Wang M M, Hou F J. Influence of main factors on grass litter decomposition. Pratacultural Science, 2012, 29(10): 1631-1637. 王苗苗, 侯扶江. 草地凋落物分解的主要影响因素. 草业科学, 2012, 29(10): 1631-1637. [30] Hou H. Dynamic of Study Characteristics and Decomposition of Standing Dead and Litter in Stipa grandis Community[D]. Huhhot: Inner Mongolia University, 2013. 侯虹. 大针茅( Stipa grandis )草原群落枯落物特征及分解动态研究[D]. 呼和浩特: 内蒙古大学, 2013. [31] Liu K, Sollenberger L E, Silveira M L, et al . Grazing intensity and nitrogen fertilization affect litter responses in ‘Tifton 85’ Bermudagrass Pastures: I. mass, deposition rate, and chemical composition. Semigroup Forum, 2012, 103(1): 156-162. [32] Hempson G P, Archibald S, Bond W J, et al . Ecology of grazing lawns in Africa. Biological Reviews, 2015, 90(3): 979-994. [33] Hou X, Wang Z, Michael S P, et al . The response of grassland productivity, soil carbon content and soil respiration rates to different grazing regimes in a desert steppe in northern China. Rangeland Journal, 2014, 36(6): 573-582. [34] Gholamreza S, Hossein G, Cyrilaa C, et al . Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in Southeast Queensland. Australian Journal of Soil Research, 2008, 46(4): 348-358. [35] Wang Y, Gong J R, Liu M, et al . Effects of land use and precipitation on above-and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Applied Soil Ecology, 2015, 96: 183-191. [36] Su Y Z, Li Y L, Cui J Y, et al . Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 2005, 59(3): 267-278. [37] Hu X M. Study on Carbon Storage in Stipa breviflora Desert Steppe under Different Grazing Systems[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. 胡向敏. 不同放牧制度下短花针茅荒漠草原碳储量研究[D]. 北京: 中国农业科学院, 2014. [38] Chen W, Huang D, Liu N, et al . Improved grazing management may increase soil carbon sequestration in temperate steppe. Scientific Reports, 2015, 5: 1-13. [39] Zhang J L, Zhang W, Bi Y F. Decomposition and hydrological function of litterfall on mountain grassland. Ecology & Environment, 2008, 17(5): 1986-1990. 张建利, 张文, 毕玉芬. 山地草地凋落物分解与凋落物水文功能. 生态环境学报, 2008, 17(5): 1986-1990. [40] Zhang J L, Zhang W, Bi Y F. The litter decomposition and maximum water holding rate in mountain grassland. Pratacultural Science, 2008, 25(3): 108-110. 张建利, 张文, 毕玉芬.山地草地凋落物分解与持水力的研究. 草业科学, 2008, 25(3): 108-110. [41] Chen W Q. The Mechanism of Different Grazing on Leymus chinensis Grassland Ecosystem Carbon Sequestration[D]. Beijing: China Agricultural University, 2015. 陈文青. 不同放牧方式对羊草草原生态系统碳固持的影响机制[D]. 北京: 中国农业大学, 2015. [42] Beukes P C, Cowling R M. Impacts of non-selective grazing on cover, composition, and productivity of Nama-karoo grassy shrubland. African Journal of Range & Forage Science, 2000, 17(1): 27-35. [43] Halde C, Hammermeistera M, Mcleann L, et al . Soil compaction under varying rest periods and levels of mechanical disturbance in a rotational grazing system. Canadian Journal of Soil Science, 2011, 91(6): 957-964. [44] Koller R, Robin C, Bonkowski M, et al . Litter quality as driving factor for plant nutrition via grazing of protozoa on soil microorganisms. Fems Microbiology Ecology, 2013, 85(2): 241-250. [45] Risch A C, Schotz M, Vandegehuchte M L, et al . Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. Ecology, 2015, 96(12): 3312-3322. [46] Bai Y, Wu J, Pan Q, et al . Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023-1034. [47] Wei X F. Study on Plant Species Litter Decomposition Changes under Different Grazing Intensities in the Songnen Grassland[D]. Changchun: Northeast Normal University, 2013. 魏晓凤. 松嫩草地不同放牧强度下植物物种枯落物分解的变化规律研究[D]. 长春: 东北师范大学, 2013. [48] Oñatibia G R, Aguiar M R, Semmartin M. Are there any trade-offs between forage provision and the ecosystem service of C and N storage in arid rangelands. Ecological Engineering, 2015, 77: 26-32. [49] Schönbach P, Wan H, Gierus M, et al . Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant & Soil, 2011, 340(1/2): 103-115. [50] Gao Y H, Chen H, Luo P, et al . Effects of grazing intensity on decompositions of two dominant plant species litters in alpine meadow on the Northwester Sichuan. Ecologic Science, 2007, 26(3): 193-198. [51] Lodge G M, King K L, Harden S. Effects of pasture treatments on detached pasture litter mass, quality, litter loss, decomposition rates, and residence time in northern New South Wales. Crop & Pasture Science, 2006, 57(10): 1073-1085. [52] Li C, Hao X, Willms W D, et al . Seasonal response of herbage production and its nutrient and mineral contents to long-term cattle grazing on a rough fescue grassland. Agriculture Ecosystems & Environment, 2009, 132(1/2): 32-38. [53] Liu Y, Liu Z H, Deng L, et al . Species diversity and functional groups responses to different seasonal grazing in alpine grassland. Pratacultural Science, 2016, 33(7): 1403-1409. 刘玉, 刘振恒, 邓蕾, 等. 季节性放牧对草地植物多样性与功能群特征的影响. 草业科学, 2016, 33(7): 1403-1409. [54] Cheng X, Luo Y, Su B, et al . Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agriculture Ecosystems & Environment, 2010, 138(3/4): 206-213. [55] Wang M M. Decomposition of Litter and Dung in Typical Steppe-Tan Sheep Grazing System and Its Ecosystem Service[D]. Lanzhou: Lanzhou University, 2012. 王苗苗. 典型草原-滩羊轮牧系统枯落物和羊粪的分解特征及其生态服务价值[D]. 兰州: 兰州大学, 2012. [56] Schnyder H, Locher F, Auerswald K. Nutrient redistribution by grazing cattle drives patterns of topsoil N and P stocks in a low-input pasture ecosystem. Nutrient Cycling in Agroecosystems, 2010, 88(2): 183-195. [57] Rossignol N, Bonis A, Bouzillé J B. Grazing-induced vegetation patchiness controls net N mineralization rate in a semi-natural grassland. Acta Oecologica, 2011, 37(3): 290-297. [58] Zhang J W. Effects of Yak and Tibetan Sheep Grazing and Simulation Trampling on Litters Stoichiometric Characteristics in Tianzhu Alpine Meadow[D]. Lanzhou: Gansu Agricultural University, 2016. 张建文. 牦牛和藏羊放牧及模拟践踏对天祝高寒草甸凋落物化学计量特征的影响[D]. 兰州: 甘肃农业大学, 2016. [59] Loonen M, Fivez L, Meire P, et al . Geese impact on the nitrogen cycle and especially on the fate of litter nitrogen in Artic wetlands[J/OL]. Biogeochemical Cycling in Wetlands, 2014: 81-103. [2016-09-07]. http://www.narcis.nl/publication/RecordID/oai%3Apure.rug.nl%3Apublications%2F1c743c8f-b6a2-4ee3-b0f5-80d2b671dce5. [60] Wan L Q. Study on Grazing and Utilization of Goats on a Shrubland in the Three Gorges Region of Yangtz River[D]. Beijing: Chinese Academy of Agricultural Sciences, 2001. 万里强. 长江三峡地区灌丛草地山羊放牧利用研究[D]. 北京: 中国农业科学院, 2001. [61] Nash S K, Goldberg D E. Variation in the effect of vegetation and litter on recruitment across productivity gradients. Journal of Ecology, 1999, 87(3): 436-449. [62] Sheley R, Vasquez E, Hoopes C. Functional group responses to reciprocal plant litter exchanges between native and invasive plant dominated grasslands. Invasive Plant Science & Management, 2009, 2(2): 158-165. [63] Zönnchen C, Schaaf W, Esperschütz J. Effect of plant litter addition on element leaching in young sandy soils. Journal of Plant Nutrition & Soil Science, 2014, 177(4): 585-595. [64] Ruwanza S, Shackleton C M. Effects of the invasive shrub, Lantana camara , on soil properties in the Eastern Cape, South Africa. Weed Biology & Management, 2016, 19(4): 565-569. [65] Rotundo J L, Aguiar M R. Litter effects on plant regeneration in arid lands: a complex balance between seed retention, seed longevity and soil-seed contact. Journal of Ecology, 2005, 93(4): 829-838. [66] Egawa C, Tsuyuzaki S. The effects of litter accumulation through succession on seed bank formation for small-and large-seeded species. Journal of Vegetation Science, 2013, 24(6): 1062-1073. [67] Loydi A, Donath T W, Eckstein R L, et al . Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects. Biological Invasions, 2015, 17(2): 581-595. [68] Tommy L, Oostermeijer J G B. Demographic variation and population viability in Gentianella campestris : effects of grassland management and environmental stochasticity. Journal of Ecology, 2001, 89(3): 451-463. [69] Qian L I, Yuan L, Yang S P, et al . Responses of soil microorganisms to leaf litter or artemisinin. Acta Prataculturae Sinica, 2015, 24(9): 121-129. [70] Donath T W, Eckstein R L. Effects of bryophytes and grass litter on seedling emergence vary by vertical seed position and seed size. Plant Ecology, 2010, 207(2): 257-268. [71] Saatkamp A, Affre L, Dutoit T, et al . Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Annals of Botany, 2011, 107(3): 415-426. [72] Bao T, Han G D, Zhao M L. Relationship between litter and soil physical properties of Stipa grandis grassland under different grazing intensities. Modern Agricultural Science and Technology, 2009, (8): 180-181. 薄涛, 韩国栋, 赵萌莉. 不同放牧强度下贝加尔针茅草原枯落物与土壤物理性质的关系. 现代农业科技, 2009, (8): 180-181. [73] Li Q. The Study on Litter Effects during Old-field Succession in Songnen Plain[D].Changchun: Graduate University of Chinese Academy of Sciences (Northeast Institute of Geography and Agricultural Ecology), 2014. 李强. 松嫩平原弃耕地演替过程中枯落物效应研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所), 2014. [74] Loydi A, Eckstein R L, Otte A, et al . Effects of litter on seedling establishment in natural and semi-natural grasslands: a meta-analysis. Journal of Ecology, 2013, 101(2): 454-464. [75] Wang Q Q. Effects of Litter on Seedling Establishment of Herb Species in Leymus chinensis Grassland[D]. Baoding: Hebei University, 2011. 王谦谦. 羊草草地凋落物对野生草本植物种苗建植的影响[D]. 保定: 河北大学, 2011. [76] Wellstein C. Seed-litter-position drives seedling establishment in grassland species under recurrent drought. Plant Biology, 2012, 14(6): 1006-1010. [77] Hladyz S, Åbjörnsson K, Chauvet E, et al . Chapter 4-stream ecosystem functioning in an agricultural landscape: The importance of terrestrial-aquatic linkages. Advances in Ecological Research, 2011, 44: 211-276. [78] Chen J, Li Y, Huang J H. Decomposition of mixed litter of four dominant species in an Inner Mongolia steppe. Chinese Journal of Plant Ecology, 2011, 35(1): 9-16. 陈瑾, 李扬, 黄建辉. 内蒙古典型草原4种优势植物凋落物的混合分解研究. 植物生态学报, 2011, 35(1): 9-16. [79] Xiao C, Janssens I A, Zhou Y, et al . Strong stoichiometric resilience after litter manipulation experiments: a case study in a Chinese grassland. Biogeosciences Discussions, 2014, 11(7): 757-767. [80] Liu Z K, Wang S P, Han J G, et al . Decomposition and nutrients dynamics of plant litter and roots in Inner Mongolia steppe. Acta Prataculturae Science, 2005, 14(1): 24-30. 刘忠宽, 汪诗平, 韩建国, 等. 内蒙古温带典型草原植物凋落物和根系的分解及养分动态的研究. 草业学报, 2005, 14(1): 24-30. [81] Austin A T, Schlesinger W H. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4618-4622. [82] Campanella M V, Bisigato A J. What causes changes in plant litter quality and quantity as consequence of grazing in the Patagonian Monte: Plant cover reduction or changes in species composition. Austral Ecology, 2010, 35(7): 787-793. [83] He Y, Xu X, Kueffer C, et al . Leaf litter of a dominant cushion plant shifts nitrogen mineralization to immobilization at high but not low temperature in an alpine meadow. Plant & Soil, 2014, 383(1/2): 415-426. [84] Zhang Y B, Luo P, Sun G, et al . Effects of grazing on litter decomposition in two alpine meadow on the eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2012, 32(15): 4605-4617. 张艳博, 罗鹏, 孙庚, 等. 放牧对青藏高原东部两种典型高寒草地类型凋落物分解的影响. 生态学报, 2012, 32(15): 4605-4617. [85] Kölbl A, Steffens M, Wiesmeier M, et al . Grazing changes topography-controlled topsoil properties and their interaction on different spatial scales in a semi-arid grassland of Inner Mongolia, P R. China. Plant & Soil, 2011, 340(1/2): 35-58. [86] Rice E L. Allelopathy[M]. Second Edition. New York: Academic Press INC, 1984: 309-315. [87] Kong C H, Hu F. Effect of Plant Allelopathy (Reinforce each other) and Its Application[M]. Beijing: China Agriculture Press, 2001: 3-4. 孔垂华, 胡飞. 植物化感(相生相克)作用及其应用[M]. 北京: 中国农业出版社, 2001: 3-4. [88] Esperschütz J, Welzl G, Schreiner K, et al . Incorporation of carbon from decomposing litter of two pioneer plant species into microbial communities of the detritusphere. Fems Microbiology Letters, 2011, 320(1): 48-55. [89] Pan X, Berg M P, Butenschoen O, et al . Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss. Proceedings of the Royal Society Biological Sciences, 2015, 282: 20150103. [90] Yuan J L, Liang D F, Zhang S T. Litter and its interaction with standing vegetation affect seedling recruitment in Tibetan alpine grasslands. Plant Ecology & Diversity, 2015, 9(1): 1-7. [91] Mooshammer M, Wanek W, Hämmerle I, et al . Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature Communications, 2011, 5, 3694. [92] Wang H, Xie Y S, Cheng J M, et al . Allelopathic effects of Artemisia sacrorum population in typical steppe based on niche theory. Chinese Journal of Applied Ecology, 2012, 23(3): 673-678. [93] Yu L N. Allelopathy Effect of Composite Plant Litters on Stipa Seeds In Loess Region[D]. Yangling: Northwest Agriculture and Forestry University, 2012. 于鲁宁. 黄土区菊科植物枯落物对针茅种子的化感作用[D]. 杨凌: 西北农林科技大学, 2012. [94] Ma R, Wang M, Zhao K, et al . Allelopathy of aqueous extract from Ligularia virgaurea , a dominant weed in psychro-grassland, on pasture plants. Chinese Journal of Applied Ecology, 2006, 17(5): 845-850. [95] Nyanumba S M, Jr J F C. Effect of aboveground litter on belowground plant interactions in a native rough fescue grassland. Basic & Applied Ecology, 2012, 13(13): 615-622. [96] Bao G, Saikkonen K, Wang H, et al . Does endophyte symbiosis resist allelopathic effects of an invasive plant in degraded grassland. Fungal Ecology, 2015, 17: 114-125. [97] Hättenschwiler S, Gasser P. Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1519-1524. [98] Bradford M A, Jones T H, Bardgett R D, et al . Impacts of soil faunal community composition on model grassland ecosystems. Science, 2002, 298: 615-618. [99] Igor N, Aliaksra R, Alyona S, et al . Consequences of biodiversity loss for litter decomposition across biomes. Nature, 2014, 509: 218-221. [100] Matulich K L, Weihe C, Allison S D, et al . Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME Journal, 2015, 9: 2477-2489. [101] Jin H, Sun O J, Liu J. Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid, grassland ecosystem. Journal of Plant Ecology, 2010, 3(3): 209-217. [102] Lecain D R, Hart R H. Carbon exchange rates in grazed and ungrazed pastures of wyoming. Journal of Range Management, 2000, 53(2): 199-206. [103] Bork E, Willms W, Tannas S, et al . Seasonal patterns of forage availability in the fescue grasslands under contrasting grazing histories. Rangeland Ecology & Management, 2012, 65(1): 47-55. [104] Chapman S K, Hart S C, Cobb N S, et al . Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology, 2008, 84(11): 2867-2876. [105] Wang S P, Wang Y F. The S cycling in Inner Mongolia steppe grazed by sheep. Acta Agrestia Sinica, 1998, 6(4): 252-257. 汪诗平, 王艳芬. 内蒙古典型草原放牧生态系统硫循环模式的初步研究. 草地学报, 1998, 6(4): 252-257. [106] Zhang S Y, Li D X, Bu C X. The flow of nitrogen among herbage-soil-animal in Stipa breviflora desert steppe community in Inner Mongolia. Acta Agrestia Sinica, 1991, 1(1): 149-155. 张淑艳, 李德新, 布彩霞. 短花针茅荒漠草原群落土壤-牧草-家畜之间氮流的初步研究. 草地学报, 1991, 1(1): 149-155. [107] Roberts J L, Olson B E. Effect of Euphorbia esula , on sheep rumen microbial activity and mass in vitro . Journal of Chemical Ecology, 1999, 25(2): 297-314. [108] Moisey D M, Willms W D, Bork E W. Effect of standing litter on rough fescue utilization by cattle. Rangeland Ecology & Management, 2006, 59(2): 197-203. [109] Wang M J. Effects of Different Grazing Intensities on Grassland Ecosystem Health of Leymus chinensis Meadow Steppe[D]. Huhhot: Inner Mongolia Agricultural University, 2008. 王明君. 不同放牧强度对羊草草甸草原生态系统健康的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2008. [110] Fonderflick J, Besnard A, Beuret A, et al . The impact of grazing management on Orthoptera abundance varies over the season in Mediterranean steppe-like grassland. Acta Oecologica, 2014, 60(10): 7-16. [111] Cao H, Zhao X, Wang S, et al . Grazing intensifies degradation of a Tibetan Plateau alpine meadow through plant-pest interaction. Ecology & Evolution, 2015, 5(12): 2478-2486. [112] Li Q. Effects of Managed Meadows on Diversity of Insect Community and Soil Macrofauna in the Tibetan Region, Northwestern Yunnan, China[D]. Xishuangbanna: Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 2006. 李青. 滇西北藏区草地管理方式对草丛昆虫群落和大型土壤动物群落多样性的影响[D]. 西双版纳: 中国科学院研究生院(西双版纳热带植物园), 2006. [113] Jankielsohn A, Scholtz C H, Louw S V. Effect of habitat transformation on dung beetle assemblages a comparison between a South African Nature reserve and neighboring farms. Environmental Entomology, 2015, 30(3): 474-483. [114] Hang J. Study on Landscape Pattern of Vegetation and Variation of Composition and Spatial Distribution of Ground-dwelling Beetles (Coleoptera) Community in Hilly and Gully Loess Region, Ningxia[D]. Yinchuan: Ningxia University, 2014. 杭佳. 黄土丘陵区植被景观格局与地表甲虫群落组成及空间分布的变化研究[D]. 银川: 宁夏大学, 2014. [115] Sileshi G, Kenis M. Survival, longevity and fecundity of overwintering Mesoplatys ochroptera Stål (Coleoptera: Chrysomelidae) defoliating Sesbania sesban (Leguminosae) and implications for its management in southern Africa. Agricultural & Forest Entomology, 2001, 3(3): 175-181. [116] Thompson C M, Gese E M. Influence of vegetation structure on the small mammal community in a shortgrass prairie ecosystem. Acta Theriologica, 2013, 58: 55-61. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||