[1] Intergovernment Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013. [2] Gang C, Zhou W, Wang Z, et al . Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy & Crop Science, 2014, 201(1): 57-68. [3] Gao Q, Zhu W, Schwartz M W, et al . Climatic change controls productivity variation in global grasslands. Scientific Reports, 2016, 6: 26958. [4] Wu S H, Yin Y H, Zheng D, et al . Climate changes in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1): 3-11. 吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势. 地理学报, 2005, 60(1): 3-11. [5] Li Y N, Zhao X Q, Cao G M, et al . Analyses on climates and vegetation productivity background at Haibei alpine meadow ecosystem research station. Plateau Meteorology, 2004, 23(4): 558-567. 李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析. 高原气象, 2004, 23(4): 558-567. [6] Parton W J, Stewart J W B, Cole C V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 1988, 5(1): 109-131. [7] Bandaranayake W, Qian Y L, Parton W J, et al . Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agronomy Journal, 2003, 95(3): 558-563. [8] Cong R, Wang X, Xu M, et al . Evaluation of the CENTURY model using long-term fertilization trials under corn-wheat cropping systems in the typical croplands of China. Plos One, 2014, 9(4): e95142. [9] Xiao X, Chen D, Peng Y, et al . Observation and modeling of plant biomass of meadow steppe in Tumugi, Xingan League, Inner Mongolia, China. Vegetatio, 1996, 127(2): 191-201. [10] Zhang C H, Wang M J, Zhang L, et al . Response of meadow steppe ANPP to climate change in Hulunbeir, Inner Mongolia-a simulation study. Acta Prataculturae Sinica, 2013, 22(3): 41-50. 张存厚, 王明玖, 张立, 等. 呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟. 草业学报, 2013, 22(3): 41-50. [11] Xiao X M, Wang Y F, Chen Z Z. Dynamics of primary productivity and soil organic matter of typical steppe in the Xilin river basin of Inner Mongolia and their response to climate change. Chinese Bulletin of Botany, 1996, 38(1): 45-52. 肖向明, 王义凤, 陈佐忠. 内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应. 植物学报, 1996, 38(1): 45-52. [12] Yuan F, Han X G, Ge J P, et al . Net primary productivity of Leymus chinensis steppe in Xilin River basin of Inner Mongolia and its responses to global climate change. Chinese Journal of Applied Ecology, 2008, 19(10): 2168-2176. 袁飞, 韩兴国, 葛剑平, 等. 内蒙古锡林河流域羊草草原净初级生产力及其对全球气候变化的响应. 应用生态学报, 2008, 19(10): 2168-2176. [13] Mo Z H, Li Y E, Gao Q Z. Simulation on productivity of main grassland ecosystems responding to climate change. Chinese Journal of Agrometeorology, 2012, 23(4): 545-554. 莫志鸿, 李玉娥, 高清竹. 主要草原生态系统生产力对气候变化响应的模拟. 中国农业气象, 2012, 23(4): 545-554. [14] Moss R H, Edmonds J A, Hibbard K A, et al . The next generation of scenarios for climate change research and assessment. Nature, 2010, 463(7282): 747-756. [15] Li Y M, Wu W X, Ge Q S, et al . Simulating climate change impacts and adaptive measures for rice cultivation in Hunan Province, China. Journal of Applied Meteorology & Climatology, 2016, 55(6): 160205104123009. [16] Pu J Y, Li Y N, Zhao L, et al . The relationship between seasonal changes of Kobresia humilis meadow biomass and the meteorological factors. Act Agrestia Sinica, 2005, 13(3): 238-241. 蒲继延, 李英年, 赵亮, 等. 矮嵩草草甸生物量季节动态及其与气候因子的关系. 草地学报, 2005, 13(3): 238-241. [17] Sun J W, Li Y N, Song C G, et al . Seasonal dynamics model of aboveground biomass and leaf area index on alpine Kobresia humilis meadow in Qinghai-Tibet Plateau. Chinese Journal of Agrometeorology, 2010, 31(2): 230-234. 孙建文, 李英年, 宋成刚, 等. 高寒矮嵩草草甸地上生物量和叶面积指数的季节动态模拟. 中国农业气象, 2010, 31(2): 230-234. [18] Li D. Modelling Dynamics of Soil Organic Carbon in Alpine Meadow by Using Century Model. Nanjing: Nanjing Agricultural University, 2011. 李东. 基于CENTURY模型的高寒草甸土壤有机碳动态模拟研究. 南京: 南京农业大学, 2011. [19] Li D, Luo X P, Cao G M, et al . Simulating of the response of soil heterotrophic respiration to climate change and nitrogen deposition in alpine meadows. Acta Prataculturae Sinica, 2015, 24(7): 1-11. 李东, 罗旭鹏, 曹广民, 等. 高寒草甸土壤异养呼吸对气候变化和氮沉降响应的模拟. 草业学报, 2015, 24(7): 1-11. [20] Warszawski L, Frieler K, Huber V, et al . The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proceedings of the National Academy of Sciences, 2014, 111(9): 3228-3232. [21] Leng G, Tang Q. Modeling the impacts of future climate change on irrigation over China: sensitivity to adjusted projections. Journal of Hydrometeorology, 2014, 15(15): 2085-2103. [22] Hempel S, Frieler K, Warszawski L, et al . A trend-preserving bias correction - the ISI-MIP approach. Earth System Dynamics, 2013, 4(2): 219-236. [23] Parton W J, Scurloc J M O, Ojima D S, et al . Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 1993, 7(4): 785-809. [24] Wang S, Geng Y B, Mu Y. Responses of the aboveground net primary productivity of typical steppe to climate change-a simulation based on CENTURY Model. Acta Prataculturae Sinica, 2016, 25(12): 4-13. 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟. 草业学报, 2016, 25(12): 4-13. [25] Zhou T, Shi P, Wang S. Impacts of climate change and human activities on soil carbon storage in China. Acta Geographica Sinica, 2003, 58(5): 727-734. [26] Ma W H, Fang J Y, Yang Y H, et al . Biomass carbon stocks and their changes in northern China’s grasslands during 1982-2006. Scientia Sinica Vitae, 2010, 40(7): 632-641. 马文红, 方精云, 杨元合, 等. 中国北方草地生物量动态及其与气候因子的关系. 中国科学: 生命科学, 2010, 40(7): 632-641. [27] Liu Y Y, Li Z L, Han J Y, et al . Influences of precipitation regimes and elevated CO 2 on photosynthesis and biomass accumulation in Leymus chinensis . Acta Prataculturae Sinica, 2015, 24(11): 128-136. 刘玉英, 李卓琳, 韩佳育, 等. 模拟降雨量变化与CO 2 浓度升高对羊草光合特性和生物量的影响. 草业学报, 2015, 24(11): 128-136. [28] Kirtman B P, Min D, Infanti J M, et al . The North American Multimodel ensemble: Phase-1 Seasonal-to-interannual prediction, Phase-2 toward developing intraseasonal prediction. Bulletin of the American Meteorological Society, 2014, 95(2): 585-601. [29] Lobell D B, Bonfils C, Duffy P B. Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison. Geophysical Research Letters, 2007, 34(5): 114-127. [30] Zhang C H, Wang M J, Wulanbater, et al . Responses of ANPP to climate change in Inner Mongolia typical steppe-a simulation study. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(6): 1229-1237. 张存厚, 王明玖, 乌兰巴特尔, 等. 内蒙古典型草原地上净初级生产力对气候变化响应的模拟. 西北植物学报, 2012, 32(6): 1229-1237. [31] Li Y N, Zhao L, Zhao X Q, et al . Effects of a 5-years mimic temperature increase to the structure and productivity of Kobresia humilis meadow. Acta Agrestia Sinica, 2004, 12(3): 236-239. 李英年, 赵亮, 赵新全, 等. 5年模拟增温后矮嵩草草甸群落结构及生产量的变化. 草地学报, 2004, 12(3): 236-239. [32] Ottman M J, Kimball B A, Pinter P J, et al . Elevated CO 2 increases sorghum biomass under drought conditions. New Phytologist, 2001, 150(2): 261-273. [33] Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO 2 enrichment. Chinese Journal of Applied Ecology, 2002, 13(10): 1323-1338. [34] Zhou H K, Zhou L, Zhao X Q, et al . Stability of alpine meadow ecosystem on Qinghai-Tibetan Plateau. Chinese Science Bulletin, 2006, 51(1): 63-69. 周华坤, 周立, 赵新全, 等. 青藏高原高寒草甸生态系统稳定性研究. 科学通报, 2006, 51(1): 63-69. [35] Zhou H K, Zhao X Q, Zhao L, et al . Restoration capability of alpine meadow ecosystem on Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 2008, 27(5): 697-704. 周华坤, 赵新全, 赵亮, 等. 青藏高原高寒草甸生态系统的恢复能力. 生态学杂志, 2008, 27(5): 697-704. [36] Fu G, Zhou Y T, Shen Z X, et al . Relationships between aboveground biomass and climate factors on alpine meadow in Northern Tibet. Chinese Journal of Grassland, 2011, 33(4): 31-36. 付刚, 周宇庭, 沈振西, 等. 藏北高原高寒草甸地上生物量与气候因子的关系. 中国草地学报, 2011, 33(4): 31-36. [37] Lü X M, Zheng D. Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze river. Resources and Environment in the Yangte Basin, 2006, 15(5): 603-607. 吕新苗, 郑度. 气候变化对长江源地区高寒草甸生态系统的影响. 长江流域资源与环境, 2006, 15(5): 603-607. [38] Hallegatte S. Strategies to adapt to an uncertain climate change. Global Environmental Change, 2009, 19(2): 240-247. |