[1] Liu Y, Zhang Y P.National alfalfa industrial development plan (2016-2020). China Animal Industry, 2017, (11): 32. 刘源, 张院萍. 全国苜蓿产业发展规划(2016-2020). 中国畜牧业, 2017, (11): 32. [2] Song Y Y.Evaluation of the resistance of forty varieties of alfalfa to stem and leaf fungal diseases. Lanzhou: Lanzhou University, 2016. 宋雨阳. 紫花苜蓿40个品种对茎叶真菌病害的抗性评价. 兰州: 兰州大学, 2016. [3] Cao L X, Zhao C H, Kong Q, et al. Research progress in root rot of alfalfa (Medicago sativa L.). Inner Mongolia Agricultural Science and Technology, 2006, (3): 36-37. 曹丽霞, 赵存虎, 孔庆, 等. 紫花苜蓿根腐病病原及防治研究进展. 内蒙古农业科技, 2006, (3): 36-37. [4] An H L.Study on pathogen of alfalfa root rot in Gansu Province. Lanzhou: Lanzhou University, 2016. 安欢乐. 甘肃省紫花苜蓿根腐病的病原研究. 兰州: 兰州大学, 2016. [5] Meng Y.Population and pathogenicity of Fusasrium associated with alfalfa in arid-irrigated area of Gansu Province. Lanzhou: Gansu Agricultural University, 2006. 孟嫣. 甘肃省干旱灌区苜蓿地土壤镰刀菌种群结构及致病性研究. 兰州: 甘肃农业大学, 2006. [6] Wen Z H.Root rot and its biological control of lucerne growing at Huanxian county, Gansu Province. Lanzhou: Lanzhou University, 2015. 文朝慧. 甘肃环县紫花苜蓿根腐病及其生物防治. 兰州: 兰州大学, 2015. [7] Smith S, Read D.Mycorrhizal symbioses (2nd Edition). San Diego, California: Academic Press, 1997. [8] Caron M, Fortin J A, Richard C.Effect of inoculation sequence on the interaction between Glomus Intraradices and Fusarium oxysporum F.Sp. radicis-lycopersici in tomatoes. Canadian Journal of Plant Pathology, 2009, 8(1): 12-16. [9] Jie W, Bai L, Yu W, et al. Analysis of interspecific relationships between Funneliformis mosseae and Fusarium oxysporum in the continuous cropping of soybean rhizosphere soil during the branching period. Biocontrol Science & Technology, 2015, 25(9): 1036-1051. [10] Robab M I, Shaikh H, Azam T.Antagonistic effect of Glomus mosseae on the pathogenicity of root-knot nematode infected Solanum nigrum. Crop Protection, 2012, 42(4): 351-355. [11] Matsubara Y I, Hasegawa N, Ohba N.Relation between fiber and pectic substances in root tissue and tolerance to Fusarium root rot in Asparagus plants infected with arbuscular mycorrhizal fungus. Engei Gakkai Zasshi, 2008, 72(4): 275-280. [12] Hernándezmontiel L G, Ruedapuente E O, Cordobamatson M V, et al. Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings. Crop Protection, 2013, 47(5): 61-66. [13] Aeron A, Maheshwari D K, Dheeman S, et al. Plant growth promotion and suppression of charcoal-rot fungus (Macrophomina phaseolina) in velvet bean (Mucuna pruriens L.) by root nodule bacteria. Journal of Phytopathology, 2017, 165: 463-478. [14] Noreen R, Ali S A, Hasan K A, et al. Evaluation of biocontrol potential of Fluorescent pseudomonas associated with root nodules of mungbean. Crop Protection, 2015, 75: 18-24. [15] Arfaoui A, Sifi B, Boudabous A, et al. Identification of rhizobium isolates possessing antagonistic activity against Fusarium oxysporum F.Sp. Ciceris, the causal agent of Fusarium wilt of chickpea. Journal of Plant Pathology, 2006, 88(1): 67-75. [16] Zhuang Q, Zhao X J, Song F Q.Amorpha fruticose arbuscular mycorrhizal (AM) root exudates induced nodulation factors of rhizobia and their interactions. Journal of Northwest Forestry University, 2018, 33(3): 164-168. 庄倩, 赵晓娟, 宋福强. 紫穗槐丛枝菌根(AM)根系分泌物诱导根瘤菌结瘤因子及作用研究. 西北林学院学报, 2018, 33(3): 164-168. [17] Koske R E, Gemma J N.A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 1989, 92(4): 486-488. [18] Uddling J, Gelangalfredsson J, Piikki K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 2007, 91(1): 37-46. [19] Yamamoto A, Nakamura T, Adu-Gyamfi J J, et al. Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). Journal of Plant Nutrition, 2002, 25(10): 2295-2301. [20] Guo Y E, Wang X Y, Gao P, et al. Effects of Glomus mosseae and grass endophytes on the growth of Lolium perenne under phosphorus addition. Acta Prataculturae Sinica, 2017, 26(12): 160-169. 郭艳娥, 王晓瑜, 高萍, 等. 磷添加条件下摩西球囊霉与禾草内生真菌对多年生黑麦草生长的影响. 草业学报, 2017, 26(12): 160-169. [21] Isaac S, Gokhale A V.Autolysis: A tool for protoplast production from Aspergillus nidulans. Transactions of the British Mycological Society, 1982, 78(3): 389-394. [22] Cattelan A J, Hartel P G, Fuhrmann J J.Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 1999, 63(6): 1670-1680. [23] Zhang H, Jiang Y, He Z, et al. Cadmium accumulation and oxidative burst in garlic (Allium sativum). Journal of Plant Physiology, 2005, 162(9): 977-984. [24] Qin G Z, Tian S P.Enhancement of biocontrol activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology, 2005, 95(1): 69-75. [25] Mukherjee S P, Choudhuri M A.Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum, 1983, 58(2): 166-170. [26] Kristl J, Krajncic B, Brodnjak-Voncina D, et al. Evaluation of measurement uncertainty in the determination of jasmonic acid in Lemna Minor L. by liquid chromatography with fluorescence detection. Accreditation & Quality Assurance, 2007, 12(6): 303-310. [27] Abiven S, Heim A, Schmidt M W I. Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: Consequences for assessing lignin dynamics in soil. Plant & Soil, 2011, 343(1/2): 369-378. [28] Ludidi N.Measurement of nitric oxide in plant tissue using difluorofluorescein and oxyhemoglobin. Cyclic Nucleotide Signaling in Plants, 2013, 1016: 253-259. [29] Okamoto M, Hanada A, Kamiya Y, et al. Measurement of abscisic acid and gibberellins by gas chromatography/mass spectrometry. Methods in Molecular Biology, 2009, 495(2): 53-60. [30] Tajini F, Trabelsi M, Drevon J J.Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus Vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. [31] Van Rhijn P, Fang Y, Galili S, et al. Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 5467-5472. [32] Smith A H, Gill W M, Pinkard E A, et al. Anatomical and histochemical defence responses induced in juvenile leaves of Eucalyptus globulus and Eucalyptus nitens by mycosphaerella infection. Forest Pathology, 2007, 37(6): 361-373. [33] Schwendemann A B, Decombeix A L, Taylor T N, et al. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a triassic conifer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(33): 13630-13634. [34] Liu X L.Influence of arbuscular mycorrhizal fungi on the growth of tobacco and tobacco bacterial wilt. Chongqing: Southwest University, 2014. 刘先良. 接种丛枝菌根真菌对烟草生长及烟草青枯病的影响. 重庆: 西南大学, 2014. [35] Wei L, Wang W W, Li X Y, et al. Physiological differences in soybean resistance to Pythium root rot. Soybean Science, 2017, 36(3): 425-429. 魏崃, 王伟威, 李馨园, 等. 大豆抗腐霉根腐病的生理差异研究. 大豆科学, 2017, 36(3): 425-429. [36] Ma J F, Li M Q, Zhang Z H, et al. Study on relationship between phenylalanine ammonia-lyase (PAL) and resistance to crown and root rot in alfalfa cultivars. Acta Prataculturae Sinica, 2003, 12(4): 35-39. 马静芳, 李敏权, 张自和, 等. 苯丙氨酸解氨酶与苜蓿种质根和根颈腐烂病抗病性研究. 草业学报, 2003, 12(4): 35-39. [37] Wojtaszek P.Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 1997, 322(3): 681-692. [38] Xia M X, Wang W, Yuan R, et al. Superoxide dismutase and plant resistance to the environmental stress. Molecular Plant Breeding, 2015, 13(11): 2633-2646. 夏民旋, 王维, 袁瑞, 等. 超氧化物歧化酶与植物抗逆性. 分子植物育种, 2015, 13(11): 2633-2646. [39] Van Loon L C. Pathogenesis-related proteins. Plant Molecular Biology, 1985, 4(2/3): 111-116. [40] Wan P P.Purification, properties and antigungal activity of β-1,3-glucanase. Taian: Shandong Agricultural University. 2004. 万平平. Β-1,3-葡聚糖酶的纯化、特性及其抗菌活性. 泰安: 山东农业大学, 2004. [41] Selitrennikoff C P.Antifungal proteins. Applied & Environmental Microbiology, 2001, 67(7): 2883-2894. [42] Lazalt A M, Beligni M V, Lamattina L.Nitric oxide preserves the level of chlorophyll in potato leaves infected by phytophthora infestans. European Journal of Plant Pathology, 1997, 103(7): 643-651. [43] Gao F, Li G Y, Wang Q Y.Biochemical mechanisms of SA-induced cotton resistance to Verticilli-um wilt. Xingjiang Agricultural Science, 2004, 41(5): 333-336. 高峰, 李国英, 王钦英. 水杨酸诱导棉花耐黄萎病的效应. 新疆农业科学, 2004, 41(5): 333-336. [44] Wang X J, Li C Q, Zhang J B, et al. Dynamic changes of jasmonic acid and salicylic acid contents in cotton root infected by Verticillium dahliae. Jiangsu Agricultural Sciences, 2016, 44(2): 141-143. 王晓静, 李成奇, 张金宝, 等. 黄萎病菌胁迫下棉花根系茉莉酸、水杨酸含量的动态变化. 江苏农业科学, 2016, 44(2): 141-143. [45] Wang Y, Wu L F, Yu Z L.The role of jasmonic acid and methy jasmonate in plant induced disease resistance. Journal of Biology, 2000, 17(1): 11-12. 王瑜, 吴丽芳, 余增亮. 茉莉酸及其甲酯在植物诱导抗病性中的作用. 生物学杂志, 2000, 17(1): 11-12. |