Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (1): 81-94.DOI: 10.11686/cyxb2020502
Previous Articles Next Articles
Zuo-tian YIN1,2(), Yu-hui WANG1(), Guang-sheng ZHOU3, Quan-hui MA1,2, Xiao-di LIU1,2, Bing-rui JIA1, Yan-ling JIANG1
Received:
2020-11-10
Revised:
2021-01-05
Online:
2021-12-01
Published:
2021-12-01
Contact:
Yu-hui WANG
Zuo-tian YIN, Yu-hui WANG, Guang-sheng ZHOU, Quan-hui MA, Xiao-di LIU, Bing-rui JIA, Yan-ling JIANG. Response and sensitivity of photosynthesis of Stipa tianschanica in desert steppe to developing soil drought process[J]. Acta Prataculturae Sinica, 2022, 31(1): 81-94.
指标 Index | R2 | 赤池信息准则Akaike information criterion | ||||||
---|---|---|---|---|---|---|---|---|
线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | 线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | |
净光合速率Asat | 0.72** | 0.77** | 0.64** | 0.70** | 71.71 | 71.25 | 75.28 | 72.78 |
水分利用效率WUE | 0.78** | 0.79** | 0.80** | 0.79** | 22.62 | 23.65 | 21.04 | 21.80 |
最大电子传输速率Jmax | 0.84** | 0.96** | 0.71** | 0.80** | 96.21 | 83.36 | 102.14 | 98.47 |
最大羧化速率Vcmax | 0.91** | 0.91** | 0.86** | 0.90** | 82.51 | 84.48 | 86.23 | 83.63 |
磷酸丙糖利用率TPU | 0.93** | 0.94** | 0.87** | 0.91** | 32.99 | 33.72 | 38.34 | 34.73 |
蒸腾速率E | 0.55** | 0.77** | 0.45** | 0.54** | 74.28 | 63.52 | 78.06 | 74.67 |
胞间二氧化碳浓度Ci | 0.32* | 0.52** | 0.34** | 0.41** | 215.19 | 210.50 | 214.53 | 212.48 |
气孔导度Gs | 0.85** | 0.86** | 0.77** | 0.83** | -70.68 | -70.34 | -62.18 | -67.80 |
光系统Ⅱ有效光化学量子产量Fv′/Fm′ | 0.75** | 0.90** | 0.69** | 0.78** | -50.10 | -64.73 | -46.03 | -52.35 |
光系统Ⅱ实际光化学效率ΦPSII | 0.62** | 0.80** | 0.56** | 0.65** | -66.68 | -76.72 | -63.99 | -68.12 |
生态系统净碳交换NEE | 0.71** | 0.79** | - | - | 50.64 | 47.98 | - | - |
生态系统呼吸速率Re | 0.96** | 0.97** | 0.89** | 0.94** | 44.42 | 42.95 | 61.56 | 52.89 |
生态系统总初级生产力GEP | 0.95** | 0.97** | 0.83** | 0.90** | 58.24 | 50.62 | 77.15 | 69.43 |
Table 1 Comparison of common regression models
指标 Index | R2 | 赤池信息准则Akaike information criterion | ||||||
---|---|---|---|---|---|---|---|---|
线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | 线性函数 Liner | 二次函数 Quadratic | 指数函数 Exponential | 幂函数 Power | |
净光合速率Asat | 0.72** | 0.77** | 0.64** | 0.70** | 71.71 | 71.25 | 75.28 | 72.78 |
水分利用效率WUE | 0.78** | 0.79** | 0.80** | 0.79** | 22.62 | 23.65 | 21.04 | 21.80 |
最大电子传输速率Jmax | 0.84** | 0.96** | 0.71** | 0.80** | 96.21 | 83.36 | 102.14 | 98.47 |
最大羧化速率Vcmax | 0.91** | 0.91** | 0.86** | 0.90** | 82.51 | 84.48 | 86.23 | 83.63 |
磷酸丙糖利用率TPU | 0.93** | 0.94** | 0.87** | 0.91** | 32.99 | 33.72 | 38.34 | 34.73 |
蒸腾速率E | 0.55** | 0.77** | 0.45** | 0.54** | 74.28 | 63.52 | 78.06 | 74.67 |
胞间二氧化碳浓度Ci | 0.32* | 0.52** | 0.34** | 0.41** | 215.19 | 210.50 | 214.53 | 212.48 |
气孔导度Gs | 0.85** | 0.86** | 0.77** | 0.83** | -70.68 | -70.34 | -62.18 | -67.80 |
光系统Ⅱ有效光化学量子产量Fv′/Fm′ | 0.75** | 0.90** | 0.69** | 0.78** | -50.10 | -64.73 | -46.03 | -52.35 |
光系统Ⅱ实际光化学效率ΦPSII | 0.62** | 0.80** | 0.56** | 0.65** | -66.68 | -76.72 | -63.99 | -68.12 |
生态系统净碳交换NEE | 0.71** | 0.79** | - | - | 50.64 | 47.98 | - | - |
生态系统呼吸速率Re | 0.96** | 0.97** | 0.89** | 0.94** | 44.42 | 42.95 | 61.56 | 52.89 |
生态系统总初级生产力GEP | 0.95** | 0.97** | 0.83** | 0.90** | 58.24 | 50.62 | 77.15 | 69.43 |
土壤干旱程度 Soil drought severity | 土壤含水量 SWC (%) | 土壤相对含水量SRWC (%) | 干旱天数Drought days (d) |
---|---|---|---|
轻度干旱Mild drought stress | 12.35±1.20 | 59.15 | 8 |
中度干旱Moderate drought stress | 10.08±0.69 | 48.28 | 10 |
重度干旱Severe drought stress | 8.14±1.05 | 38.98 | 15 |
Table 2 Changes in soil moisture content with drought
土壤干旱程度 Soil drought severity | 土壤含水量 SWC (%) | 土壤相对含水量SRWC (%) | 干旱天数Drought days (d) |
---|---|---|---|
轻度干旱Mild drought stress | 12.35±1.20 | 59.15 | 8 |
中度干旱Moderate drought stress | 10.08±0.69 | 48.28 | 10 |
重度干旱Severe drought stress | 8.14±1.05 | 38.98 | 15 |
1 | Schimel D S. Terrestrial ecosystems and the carbon-cycle. Global Change Biology, 1995, 1: 77-91. |
2 | Fang J Y, Zhu J L, Shi Y. The responses of ecosystems to global warming. Chinese Science Bulletin, 2018, 63(2): 136-140. |
方精云, 朱江玲, 石岳. 生态系统对全球变暖的响应. 科学通报, 2018, 63(2): 136-140. | |
3 | Piao S L, Sitch S, Ciais P, et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 2013, 19: 2117-2132. |
4 | Intergovernmental Panel on Climate change. Climate change 2013: The physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013. |
5 | Jackson R B, Carpenter S R, Dahm C N, et al. Water in a changing world. Ecological Applications, 2001, 11: 1027-1045. |
6 | Giorgi F, Mearns L O, Shields C, et al. Regional nested model simulations of present day and 2×CO2 climate over the central plains of the US. Climatic Change, 1998, 40: 457-493. |
7 | Pan R C. Plant physiology. Beijing: Higher Education Press, 2012. |
潘瑞炽. 植物生理学. 北京: 高等教育出版社, 2012. | |
8 | Xu Z Z, Zhou G S. Responses of photosynthetic capacity to soil moisture gradient in perennial rhizome grass and perennial bunchgrass. BMC Plant Biology, 2011, 11: 21. |
9 | Reyer C P O, Leuzinger S, Rammig A, et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Global Change Biology, 2013, 19(1): 75-89. |
10 | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437(22): 529-533. |
11 | Song J, Wan S Q, Piao S L, et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3: 1309-1320. |
12 | Chen S P, Lin G H, Huang J H, et al. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 2009, 15: 2450-2461. |
13 | Xu B, Arain M A, Black T A, et al. Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems. Global Change Biology, 2019, 26: 901-918. |
14 | Maestre F T, Eldridge D J, Soliveres S, et al. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics, 2016, 47: 215-237. |
15 | Phillips O L, Aragao L E O C, Lewis S L, et al. Drought sensitivity of the Amazon Rainforest. Science, 2009, 323: 1344-1347. |
16 | Wang Y H, Chen J Q, Zhou G S, et al. Predominance of precipitation event controls ecosystem CO2 exchange in an Inner Mongolian desert grassland, China. Journal of Cleaner Production, 2018, 197: 781-793. |
17 | Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 2010, 329(5994): 940-943. |
18 | Zscheischler J, Michalak A M, Schwalm C, et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 2014, 28: 585-600. |
19 | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295. |
20 | Adams J M, Faure H, Fauredenard L, et al. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348: 711-714. |
21 | Zhao T Q, Ouyang Z Y, Jia L Q, et al. Ecosystem services and their valuation of China grassland. Acta Ecologica Sinica, 2004, 24(6): 1101-1110. |
赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110. | |
22 | Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: Review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B-Biological Sciences, 2007, 362: 997-1008. |
23 | Wei Z J, Han G D, Zhao G, et al. Research of chinese desert grassland ecosystem. Beijing: Science Press, 2013. |
卫智军, 韩国栋, 赵钢, 等. 中国荒漠草原生态系统研究. 北京: 科学出版社, 2013. | |
24 | Wu S H, Pan T, Liu Y H, et al. Comprehensive climate change risk regionalization of China. Acta Geographica Sinica, 2017, 72(1): 3-17. |
吴绍洪, 潘韬, 刘燕华, 等. 中国综合气候变化风险区划. 地理学报, 2017, 72(1): 3-17. | |
25 | Qiao X G, Guo K, Zhao L Q, et al. Distribution, community characteristics and classification of Stipa tianschanica var. klemenzii steppe in China. Chinese Journal of Plant Ecology, 2017, 41(2): 231-237. |
乔鲜果, 郭柯, 赵利清, 等. 中国石生针茅草原的分布、群落特征和分类. 植物生态学报, 2017, 41(2): 231-237. | |
26 | Wang H Z, Han L, Xu Y L, et al. Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 2017, 37(7): 2315-2324. |
王海珍, 韩路, 徐雅丽, 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 2017, 37(7): 2315-2324. | |
27 | Wang L L, Li Q H, Xu J, et al. Morphology and physiology characteristic responses of different provenances of Artemisia ordosica to drought stress. Scientia Silvae Sinicae, 2015, 51(2): 37-43. |
王林龙, 李清河, 徐军, 等. 不同种源油蒿形态与生理特征对干旱胁迫的响应. 林业科学, 2015, 51(2): 37-43. | |
28 | Li L Z, Zhang D G, Xin X P, et al. Photosynthetic characteristics of Leymus chinensis under different soil moisture grades in Hulunber prairie. Acta Ecologica Sinica, 2009, 29(10): 5271-5279. |
李林芝, 张德罡, 辛晓平, 等. 呼伦贝尔草甸草原不同土壤水分梯度下羊草的光合特性. 生态学报, 2009, 29(10): 5271-5279. | |
29 | Ma Q H, Liu X D, Li Y B, et al. Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation. Journal of Ecology, 2020, 108: 598-610. |
30 | Sharkey T D, Bernacchi C J, Farquhar G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell and Environment, 2007, 30: 1035-1040. |
31 | Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 1999, 16(4): 444-448. |
张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4): 444-448. | |
32 | You X, Gong J R. Significance and application of chlorophyll fluorescence dynamics process parameters. Journal of West China Forestry Science, 2012, 41(5): 90-94. |
尤鑫, 龚吉蕊. 叶绿素荧光动力学参数的意义及实例辨析. 西部林业科学, 2012, 41(5): 90-94. | |
33 | Liu Y, Lei S G, Cheng L S, et al. Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence. Acta Ecologica Sinica, 2018, 38(9): 3069-3077. |
刘英, 雷少刚, 程林森, 等. 采煤塌陷影响下土壤含水量变化对柠条气孔导度、蒸腾与光合作用速率的影响. 生态学报, 2018, 38(9): 3069-3077. | |
34 | Lin X L, Xu Z Z, Wang Y H, et al. Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica, 2008(10): 4718-4724. |
林祥磊, 许振柱, 王玉辉, 等. 羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟. 生态学报, 2008(10): 4718-4724. | |
35 | Xu H X, Li Q, Huang Y, et al. The effect of soil environmental factors on the carbon flux over Stipa krylovii ecosystem. Scientia Geographica Sinica, 2014, 34(11): 1385-1390. |
薛红喜, 李琪, 黄瑜, 等. 土壤环境因子对克氏针茅草地生态系统碳通量的影响. 地理科学, 2014, 34(11): 1385-1390. | |
36 | Reichstein M, Tenhunen J D, Roupsard O, et al. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: Revision of current hypotheses? Global Change Biology, 2002, 8: 999-1017. |
37 | Maxwell K, Johnson G N. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 2000, 51: 659-668. |
38 | Sharkey T D. Photosynthesis in intact leaves of C3 plants-physics, physiology and rate limitations. Botanical Review, 1985, 51: 53-105. |
39 | Farquhar G D, Caemmerer S V, Berry J A. A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90. |
40 | Han L, Wang H Z, Xu Y L, et al. Responses of transpiration rate of Populus pruinosa to stomatal conductance and vapor pressure deficient. Journal of Arid Land Resources and Environment, 2016, 30(8): 193-197. |
韩路, 王海珍, 徐雅丽, 等. 灰胡杨蒸腾速率对气孔导度和水汽压差的响应. 干旱区资源与环境, 2016, 30(8): 193-197. | |
41 | Li J C, Yan B G, Pan Z X, et al. Threshold effect of soil moisture on photosynthetic efficiency of tomato leaves at the seedling stage in Dry-hot Valley, Yunnan, China. Chinese Journal of Tropical Crops, 2019, 40(11): 2278-2284. |
李建查, 闫帮国, 潘志贤, 等. 干热河谷番茄苗期叶片光合效率的土壤水分阈值效应. 热带作物学报, 2019, 40(11): 2278-2284. | |
42 | Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33: 317-345. |
43 | Schwalm C R, Anderegg W R L, Michalak A M, et al. Global patterns of drought recovery. Nature, 2017, 548: 202-205. |
44 | Green J K, Seneviratne S I, Berg A M, et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature, 2019, 565: 476-479. |
45 | Wang Q, Yang Y, Liu Y Y, et al. Assessing the impacts of drought on grassland net primary production at the global scale. Scientific Reports, 2019, 9: 14041. |
46 | Schwalm C R, Williams C A, Schaefer K, et al. Assimilation exceeds respiration sensitivity to drought: A fluxnet synthesis. Global Change Biology, 2010, 16: 657-670. |
47 | Shi Z, Thomey M L, Mowll W, et al. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis. Biogeosciences, 2014, 11: 621-633. |
48 | Galmes J, Ribas-Carbo M, Medrano H, et al. Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. Journal of Experimental Botany, 2011, 62: 653-665. |
49 | Zhang Y M, Zhou G S. Advances in leaf maximum carboxylation rate and its response to environmental factors. Acta Ecologica Sinica, 2012, 32(18): 5907-5917. |
张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展. 生态学报, 2012, 32(18): 5907-5917. | |
50 | Sharkey T D. Is triose phosphate utilization important for understanding photosynthesis? Journal of Experimental Botany, 2019, 70: 5521-5525. |
51 | Gu D X, Wang Q, Otieno D. Canopy transpiration and stomatal responses to prolonged drought by a dominant desert species in Central Asia. Water, 2017, 9: 404. |
52 | Yu M H. Canopy temperature and stomatal conductance characteristics of typical sand-fixation plants and their responses to soil moisture. Beijing: Beijing Forestry University, 2016. |
于明含. 典型固沙植物冠层温度和气孔导度特征及其对土壤水分的响应. 北京: 北京林业大学, 2016. | |
53 | Tang Z C. Response and adaptability of plant to water stress. Plant Physiology Communication, 1983(4): 1-7. |
汤章城. 植物对水分胁迫的反应和适应性. 植物生理学通讯, 1983(4): 1-7. | |
54 | Davies W J, Zhang J H. Root signals and the regulation of growth and development of plants in drying soil. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 55-76. |
55 | Cao S K, Feng Q, Si J H, et al. Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 2009, 29(7): 3882-3892. |
曹生奎, 冯起, 司建华, 等. 植物叶片水分利用效率研究综述. 生态学报, 2009, 29(7): 3882-3892. | |
56 | Liu W Z. Dynamic interrelations of crop production, water consumption and water use efficiency. Journal of Natural Resources, 1998, 13(1): 3-5. |
刘文兆. 作物生产、水分消耗与水分利用效率间的动态联系. 自然资源学报, 1998, 13(1): 3-5. | |
57 | Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 2003, 30: 239-264. |
58 | Manzoni S, Vico G, Katul G, et al. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates. Functional Ecology, 2011, 25: 456-467. |
59 | Zou J, Ding J L, Qin Y, et al. Response of water use efficiency of Central Asia ecosystem to drought based on remote sensing data. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 145-152. |
邹杰, 丁建丽, 秦艳, 等. 遥感分析中亚地区生态系统水分利用效率对干旱的响应. 农业工程学报, 2018, 34(9): 145-152. | |
60 | Liu Y T, Li J, Jin Y Q, et al. The influence of drought strength on soil respiration in a woody savanna ecosystem, Southwest China. Plant and Soil, 2018, 428: 321-333. |
61 | Liu L L, Wang X, Lajeunesse M J, et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 2016, 22: 1394-1405. |
62 | Reichstein M, Tenhunen J D, Roupsard O, et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: Drought effects and decomposition dynamics. Functional Ecology, 2002, 16: 27-39. |
63 | McDowell N, Pockman W T, Allen C D, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 2008, 178: 719-739. |
64 | Adams H D, Zeppel M J B, Anderegg W R L, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 2017, 1: 1285-1291. |
65 | Duan H L, Wu J P, Liu W F, et al. Water relations and carbon dynamics under drought stress and the mechanisms of drought-induced tree mortality. Scientia Silvae Sinicae, 2015, 51(11): 113-120. |
段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理. 林业科学, 2015, 51(11): 113-120. | |
66 | Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539. |
67 | Sevanto S, McDowell N G, Dickman L T, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell and Environment, 2014, 37: 153-161. |
68 | Jin Y, Wang C K. Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. |
金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032. | |
69 | Mitchell P J, O'Grady A P, Tissue D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 2013, 197: 862-872. |
[1] | Ru ZHANG, Jian-ping LI, Wen-dong PENG, Fang WANG, Zhi-gang LI. Effects of mulching with caragana (Caragana intermedia) branches on soil moisture content and temperature and reseeded forage biomass in desertified grassland in Ningxia Province, China [J]. Acta Prataculturae Sinica, 2021, 30(4): 58-67. |
[2] | PU Xue-ke, WU Chun-hua, ZHOU Yong-jin, MIAN You-ming, MIAO Fang-fang, HOU Xian-qing, LI Rong. Effects of dual-mulching of furrow and ridge with plastic film and straw on temporal and spatial changes of soil moisture and potato yield in dry-farming areas of southern Ningxia [J]. Acta Prataculturae Sinica, 2020, 29(10): 149-160. |
[3] | JIANG La-mei, YANG Xiao-dong, YANG Jian-jun, HE Xue-min, LÜ Guang-hui. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors [J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. |
[4] | LI Wen, CAO Wen-Xia, LIU Hao-Dong, LI Xiao-Long, XU Chang-Lin, SHI Shang-Li, FENG Jin, ZHOU Chuan-Meng. Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2015, 24(10): 22-32. |
[5] | XIONG Li, XU Zheng-feng, WU Fu-zhong, YANG Wan-qin, YIN rui, LI Zhi-ping, NI Xiang-yin, XIONG Hai-tao. Effects of stepping on soil respiration of Zoysia matrella lawn during the winter dormancy period [J]. Acta Prataculturae Sinica, 2014, 23(2): 83-89. |
[6] | LI Guang, LI Yue, HUANG Gao-bao, LUO Zhu-zhu, WANG Qi, LIU Qiang, YAN Zhen-gang, ZHAO You-yi. The effects of climate change on dryland wheat production under different tillage systems [J]. Acta Prataculturae Sinica, 2012, 21(5): 160-168. |
[7] | LIU Qing-lin, ZHANG En-he, WANG Qi, WANG Tian-tao, LIU Chao-wei, YIN Hui, YU Hua-lin. Effect of irrigation and nitrogen supply levels on water consumption, grain yield and water use efficiency of spring wheat on no-tillage with stubble standing farmland [J]. Acta Prataculturae Sinica, 2012, 21(5): 169-177. |
[8] | FAN Shi-jie, WANG Di, ZHANG Jun-lian, BAI Jiang-ping, SONG Ji-xuan, MA Zhi-xia. Effects of tillage strategies on the topsoil water content and the yield of potato [J]. Acta Prataculturae Sinica, 2012, 21(2): 271-279. |
[9] | CAO Wen-xia, XU Chang-lin, ZHANG De-gang, SHI Shang-li, YAO Tuo. Ecological responses of soil bulk density and water content to different non-grazing patterns in alpine rhododendron shrubland [J]. Acta Prataculturae Sinica, 2011, 20(3): 28-35. |
[10] | TAI Jian-hui, WANG Yan-rong, LI Xiao-xia, WEI Xue, CHEN Gu. Effects of different mulching on the establishment of Cleistogenes songorica [J]. Acta Prataculturae Sinica, 2011, 20(3): 287-291. |
[11] | ZHANG Yi, XIE Yong-sheng. Effects of different patterns of surface mulching on soil hydrology in an apple orchard [J]. Acta Prataculturae Sinica, 2011, 20(2): 85-92. |
[12] | XU Hai-hong, HOU Xiang-yang, NA Ri-su. Dynamics of soil respiration under different grazing systems in a Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2011, 20(2): 219-226. |
[13] | YU Xiao-jun, PU Xiao-peng, HUANG Shi-jie, FANG Qiang-en, XU Ning, XU Chang-lin. Effects of ants (Tetramorium sp.) on eastern Qilian Mountains alpine grassland ecosystem [J]. Acta Prataculturae Sinica, 2010, 19(2): 140-145. |
[14] | LIU Guo-li, HE Shu-bin, YANG Hui-min. The responses and mechanisms of water use efficiency to different water stresses of three alfalfa varieties [J]. Acta Prataculturae Sinica, 2009, 18(3): 207-213. |
[15] | HU-Jian, JIANG Qin-jun, HAN Lie-bao, WANG Li. Status and research advances on fungicide resistance in turfgrass pathogens [J]. Acta Prataculturae Sinica, 2009, 18(2): 194-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||