Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 190-199.DOI: 10.11686/cyxb2021384
Hong-wei LI1(), Qi ZHENG1, Bin LI1, Mao-lin ZHAO1,2, Zhen-sheng LI1()
Received:
2021-10-28
Revised:
2021-11-29
Online:
2022-05-20
Published:
2022-03-30
Contact:
Hong-wei LI,Zhen-sheng LI
Hong-wei LI, Qi ZHENG, Bin LI, Mao-lin ZHAO, Zhen-sheng LI. Progress in research on tall wheatgrass as a salt-alkali tolerant forage grass[J]. Acta Prataculturae Sinica, 2022, 31(5): 190-199.
品种 Varieties | 育成年份 Released year | 来源 Origin | 国家 Country | 特性 Characteristics | 参考文献References |
---|---|---|---|---|---|
Alkar | 1951 | PI98526 | 美国American | 晚熟、耐盐碱Delayed maturation, saline and alkaline tolerance | [ |
Largoa | 1961 | PI109452 | 美国American | 耐盐碱Saline and alkaline tolerance | [ |
Jose | 1965 | PI150123 | 美国American | 耐盐碱、耐旱、优质Saline and alkaline tolerance, drought tolerance, good quality | [ |
Platte | 1972 | PI98526 | 美国American | 耐盐碱Saline and alkaline tolerance | [ |
NFTW6001 | 2014 | Jose | 美国American | 早熟、可持续、高产Early maturation, persistence, high yield | [ |
Plainsmen | 2014 | Jose | 美国American | 可持续、高产Persistence, high yield | [ |
Tyrrella | 1963 | Largo | 澳大利亚Australia | 耐盐碱Saline and alkaline tolerance | [ |
Dundas | 1998 | Largo, Jose, Tyrrell | 澳大利亚Australia | 高产High yield | |
Orbit | 1966 | PI98526 | 加拿大Canada | 抗寒、耐涝Hardness, tolerant to waterlogging | [ |
Szarvasi-1 | 2004 | 不清楚Unclear | 匈牙利Hungary | 能源植物Energy plant | [ |
Table 1 Tall wheatgrass varieties released in the major grown countries
品种 Varieties | 育成年份 Released year | 来源 Origin | 国家 Country | 特性 Characteristics | 参考文献References |
---|---|---|---|---|---|
Alkar | 1951 | PI98526 | 美国American | 晚熟、耐盐碱Delayed maturation, saline and alkaline tolerance | [ |
Largoa | 1961 | PI109452 | 美国American | 耐盐碱Saline and alkaline tolerance | [ |
Jose | 1965 | PI150123 | 美国American | 耐盐碱、耐旱、优质Saline and alkaline tolerance, drought tolerance, good quality | [ |
Platte | 1972 | PI98526 | 美国American | 耐盐碱Saline and alkaline tolerance | [ |
NFTW6001 | 2014 | Jose | 美国American | 早熟、可持续、高产Early maturation, persistence, high yield | [ |
Plainsmen | 2014 | Jose | 美国American | 可持续、高产Persistence, high yield | [ |
Tyrrella | 1963 | Largo | 澳大利亚Australia | 耐盐碱Saline and alkaline tolerance | [ |
Dundas | 1998 | Largo, Jose, Tyrrell | 澳大利亚Australia | 高产High yield | |
Orbit | 1966 | PI98526 | 加拿大Canada | 抗寒、耐涝Hardness, tolerant to waterlogging | [ |
Szarvasi-1 | 2004 | 不清楚Unclear | 匈牙利Hungary | 能源植物Energy plant | [ |
1 | Meng L, Mao P C, Guo Q, et al. Study on germplasm resources of Elytrigia species. Beijing: Science press, 2020: 1-9. |
孟林, 毛培春, 郭强, 等. 偃麦草属植物种质资源研究. 北京: 科学出版社, 2020: 1-9. | |
2 | Zhang G, Wang Z, Gao H W, et al. Comprehensive evaluation of salt tolerance at seedling stage in Elytrigia accessions. Pratacultural Science, 2008, 25(1): 51-54. |
张耿, 王赞, 高洪文, 等. 21份偃麦草属牧草苗期耐盐性评价. 草业科学, 2008, 25(1): 51-54. | |
3 | Shi G D, Meng L, Mao P C, et al. Leaf epidermal morphology and structure of Elytrigia Desv. Acta Agrestia Sinica, 2009, 17(5): 117-126. |
史广东, 孟林, 毛培春, 等. 偃麦草属植物叶片表皮形态与结构研究. 草地学报, 2009, 17(5): 117-126. | |
4 | Meng L, Shang C Y, Mao P C, et al. A comprehensive evaluation of salt tolerance for germplasm and materials of Elytrigia at the seedling stage. Acta Prataculturae Sinica, 2009, 18(4): 67-74. |
孟林, 尚春艳, 毛培春, 等. 偃麦草属植物种质材料苗期耐盐性综合评价. 草业学报, 2009, 18(4): 67-74. | |
5 | Meng L, Yang H X, Mao P C, et al. Assessment of interspecies drought resistance of Elytrigia at the seedling stage. Acta Prataculturae Sinica, 2011, 20(5): 34-41. |
孟林, 杨宏新, 毛培春, 等. 偃麦草属植物种间苗期抗旱性评价. 草业学报, 2011, 20(5): 34-41. | |
6 | Li P Y, Sun Z J, Abulaiti. Preliminary study on morphological variation and types of Elytrigia repens germplasm resources. Pratacultural Science, 2010, 27(1): 71-78. |
李培英, 孙宗玖, 阿不来提. 偃麦草种质资源外部性状变异及其形态类型的初步研究. 草业科学, 2010, 27(1): 71-78. | |
7 | Sun Z J, Li P Y, Abulaiti, et al. Evaluation on the salt tolerance of 38 germplasm resources of Elytrigria repens at seed germination stage. Pratacultural Science, 2012, 29(7): 1105-1113. |
孙宗玖, 李培英, 阿不来提, 等. 种子萌发期38份偃麦草种质耐盐性评价. 草业科学, 2012, 29(7): 1105-1113. | |
8 | Shen Z B, Wang J L, Pan D F, et al. Characteristics and cultivation techniques of a new herbage variety Nongjing 7. Heilongjiang Agricultural Sciences, 2012(4): 152-153. |
申忠宝, 王建丽, 潘多锋, 等. 牧草新品种农菁7号偃麦草特征特性及栽培技术. 黑龙江农业科学, 2012(4): 152-153. | |
9 | Li P Y, Sun Z J. Evaluation on the salt resistance of germplasm resources of 33 Elytrigria repens during seed germination period. Pratacultural Science, 2015, 32(4): 593-600. |
李培英, 孙宗玖. 33份偃麦草种质芽期耐盐性评价. 草业科学, 2015, 32(4): 593-600. | |
10 | Li P Y, Sun Z J, Abulaiti, et al. Breeding of Elytrigia variety Xinyan 1. Jiangsu Agricultural Sciences, 2015, 43(6): 184-186. |
李培英, 孙宗玖, 阿不来提, 等. 新偃1号偃麦草的选育. 江苏农业科学, 2015, 43(6): 184-186. | |
11 | Pan D F, Shen Z B, Wang J L, et al. Effects of saline-alkaloid stress on seed germination and seedling growth of grasses. Pratacultural Science, 2016, 33(11): 2276-2282. |
潘多锋, 申忠宝, 王建丽, 等. 碱性盐胁迫对偃麦草苗期生长的影响. 草业科学, 2016, 33(11): 2276-2282. | |
12 | Meng L, Bai S Q, Tian X X, et al. Technique standard of clonal propagation cultivation of Elytrigia elongata (T/HXCY 002-2020). Beijing Huaxia Grass Industry Technology Innovation Strategic Alliance, 2020. http://down.foodmate.net/standard/sort/12/76780.html. |
孟林, 白史且, 田小霞, 等. 偃麦草无性繁殖栽培技术规程(T/HXCY 002-2020). 北京华夏草业产业技术创新战略联盟, 2020. http://down.foodmate.net/standard/sort/12/76780.html. | |
13 | Zhang X Y, Dong Y C, Wang R R. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum×Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39: 1062-1071. |
14 | Zheng Q, Klindworth D L, Friesen T L, et al. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Science, 2014, 54(6): 2663-2672. |
15 | Borrajo C I, Sanchez-moreiras A M, Reigosa M J. Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS One, 2018, 13(12): e0209281. |
16 | Gu A L. Cultivation of salt-tolerant forage grass——Thinopyrum ponticum. Grassland of China, 2004, 26(2): 9. |
谷安琳. 耐盐碱栽培牧草——长穗薄冰草. 中国草地, 2004, 26(2): 9. | |
17 | Chang G Z, Yang Z Q, Yang H S. Introduction experiment of American smith elytrigia, intermediate wheatgrass and tall wheatgrass in Lanzhou, Gansu. Pratacultural Science, 2009, 26(3): 68-71. |
常根柱, 杨志强, 杨红善. 美国蓝茎冰草、中间偃麦草、高冰草引种试验. 草业科学, 2009, 26(3): 68-71. | |
18 | Zhang Y H, Yi J. Physiological and biochemical changes in seed development of five Elytrigia species. Chinese Journal of Grassland, 2007, 29(6): 53-58. |
张艳红, 易津. 偃麦草属5种植物种子发育过程中生理生化的研究. 中国草地学报, 2007, 29(6): 53-58. | |
19 | Xu M, Wang Q, Wang Y X, et al. Effects of different salt stress on seed germination and seedling growth of Elytrigia elongata. Chinese Journal of Grassland, 2020, 42(1): 15-20. |
徐曼, 王茜, 王奕骁, 等. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响. 中国草地学报, 2020, 42(1): 15-20. | |
20 | Yang J G, Mi F G, Yan L J, et al. Observations on inflorescence differentiation of Elytrigia elongata. Chinese Journal of Grassland, 2012, 34(2): 47-51. |
杨金贵, 米福贵, 闫利军, 等. 长穗偃麦草花序分化过程的观察. 中国草地学报, 2012, 34(2): 47-51. | |
21 | Zhou Y T, Guo Q, Mao P C, et al. High-frequency regeneration system of mature embryos of Elytrigia elongata. Pratacultural Science, 2019, 36(5): 1317-1322. |
周妍彤, 郭强, 毛培春, 等. 长穗偃麦草成熟种胚高频再生体系. 草业科学, 2019, 36(5): 1317-1322. | |
22 | Zhou Y T, Zhang L, Guo Q, et al. Establishment of high frequency plant regeneration system from panicle in vitro culture of Elytrigia elongata. Plant Physiology Journal, 2018, 54(9): 1475-1480. |
周妍彤, 张琳, 郭强, 等. 长穗偃麦草幼穗离体培养高频再生体系的建立. 植物生理学报, 2018, 54(9): 1475-1480. | |
23 | Zhang G F, Wang B H, Meng L, et al. Study on the diurnal variations of photosynthetic characteristics of four Elytrigia Desv. Acta Agrestia Sinica, 2005, 13(4): 344-348. |
张国芳, 王北洪, 孟林, 等. 四种偃麦草光合特性日变化分析. 草地学报, 2005, 13(4): 344-348. | |
24 | Peng Y X, Zhang L J, Yu Y J, et al. Salt tolerance of seeds and seedlings of Elytrigia. Inner Mongolia Prataculture, 2002, 14(3): 42-43. |
彭运翔, 张力君, 于颖杰, 等. 偃麦草属植物种子和幼苗的耐盐性. 内蒙古草业, 2002, 14(3): 42-43. | |
25 | Shen Y Y, Li Y, Lu N. Competitive ability and interspecific relationship among four forage species. Acta Prataculturae Sinica, 2002, 11(3): 8-13. |
沈禹颖, 李昀, 陆妮. 4种牧草种间竞争力和种间关系的研究. 草业学报, 2002, 11(3): 8-13. | |
26 | Shen Y Y. Salt tolerance of early growth of five grass species in Hexi Corridor. Acta Agrestia Sinica, 1999, 7(4): 293-299. |
沈禹颖. 河西走廊五种禾本科牧草早期耐盐性研究. 草地学报, 1999, 7(4): 293-299. | |
27 | Ma Z Y. An investigation on the economic characteristic and nutrient components of grasses. Chinese Journal of Grassland, 1986(2): 48-51. |
马振宇. 偃麦和雀麦等属牧草经济性状与营养成分的研究. 中国草地学报, 1986(2): 48-51. | |
28 | Dewey D R. Salt tolerance of twenty-five strains of Agropyron. Agronomy Journal, 1960, 52: 631-635. |
29 | Mcguire G E, Dvôrák J. High salt tolerance potential in wheatgrasses. Crop Science, 1981, 21: 702-705. |
30 | Shannon M C. Testing salt tolerance variability among tall wheatgrass lines. Agronomy Journal, 1978, 70(5): 719-722. |
31 | Grattan S R, Grieve C M, Poss J A, et al. Evaluation of salt-tolerant forages for sequential water reuse systems: I. Biomass production. Agricultural Water Management, 2004, 70(2): 109-120. |
32 | Steppuhn H, Asay K. Emergence, height, and yield of tall, NewHy, and green wheatgrass forage crops grown in saline root zones. Canadian Journal of Plant Science, 2005, 85(4): 863-875. |
33 | Weimberg R, Shannon M C. Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiologia Plantarum, 1988, 73(2): 232-237. |
34 | Bazzigalupi O, Pistorale S M, Andrés A N. Salinity tolerance during seed germination from naturalized populations of tall wheatgrass (Thinopyrum ponticum). Ciencia E Investigación Agraria, 2008, 35(3): 231-238. |
35 | Csete S, Stranczinger S, Szalontai B, et al. Tall wheatgrass cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. Szarvasi-1) as a potential energy crop for semi-arid lands of Eastern Europe//Sustainable growth and applications in renewable energy sources. Rijeka: InTech, 2011: 269-294. |
36 | Sima N A K K, Askari H, Mirzaei H H, et al. Genotype-dependent differential responses of three forage species to calcium supplement in saline conditions. Journal of Plant Nutrition, 2009, 32(4): 579-597. |
37 | Guo Q, Meng L, Mao P C, et al. Salt tolerance in two tall wheatgrass species is associated with selective capacity for K+ over Na+. Acta Physiologiae Plantarum, 2015, 37(1): 1708. |
38 | Omielan J A, Epstein E, Dvolák J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome, 1991, 34(6): 961-974. |
39 | Mullan D J, Mirzaghaderi G, Walker E, et al. Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium “exclusion” during salinity stress. Theoretical and Applied Genetics, 2009, 119(7): 1313-1323. |
40 | Chen S Y, Xia G M, Quan T Y, et al. Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Science, 2004, 167(4): 773-779. |
41 | Meng C, Quan T Y, Li Z Y, et al. Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat. BMC Genomics, 2017, 18(1): 1-24. |
42 | Wang M C, Peng Z Y, Li C L, et al. Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 2010, 8(7): 1470-1489. |
43 | Yuan W Y, Tomita M. Thinopyrum ponticum chromatin-integrated wheat genome shows salt-tolerance at germination stage. International Journal of Molecular Sciences, 2015, 16(3): 4512-4517. |
44 | Jenkins S, Barrett-Lennard E G, Rengel Z. Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): Zonation on salt land with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves. Plant Soil, 2010, 329: 91-104. |
45 | Elortegui M, Berone G D,Striker G G, et al. Anatomical, morphological and growth responses of Thinopyrum ponticum plants subjected to partial and complete submergence during early stages of development. Functional Plant Biology, 2020, 47(8): 757-768. |
46 | Vergiev S. Tall wheatgrass (Thinopyrum ponticum): Flood resilience, growth response to sea water immersion, and its capacity for erosion and flooding control of coastal areas. Environments, 2019, 6(9): 103. |
47 | Silvia L F, Carolina M, Sandra Pitta A. Agro-ecological zoning for tall wheatgrass (Thinopyrum Ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Archives of Crop Science, 2017, 1(1): 10-19. |
48 | Ciria C S, Sastre C M, Carrasco J, et al. Tall wheatgrass (Thinopyrum ponticum (Podp)) in a real farm context, a sustainable perennial alternative to rye (Secale cereale L.) cultivation in marginal lands. Industrial Crops and Products, 2020, 146: 1-8. |
49 | Smith K F, Lee C K, Borg P T, et al. Yield, nutritive value, and phenotypic variability of tall wheatgrass grown in a nonsaline environment. Australian Journal of Experimental Agriculture, 1994, 34(5): 609-614. |
50 | Vogel K P, Moore K J. Forage yield and quality of tall wheatgrass accessions in the USDA germplasm collection. Crop Science, 1998, 38(2): 509-512. |
51 | Jafari A A, Anvari H, Nakhjavan S, et al. Effects of phenological stages on yield and quality traits in 22 populations of tall wheatgrass Agropyron elongatum grown in Lorestan, Iran. Journal of Rangeland Science, 2010, 1(1): 9-16. |
52 | Stroh J R, Law A G. Effects of defoliation on the longevity of stand, dry matter yields and forage quality of tall wheatgrass, Agropyron elongatum (Host) Beauv. Agronomy Journal, 1967, 59(5): 432-435. |
53 | Ruf T, Emmerling C. Site-adapted production of bioenergy feedstocks on poorly drained cropland through the cultivation of perennial crops. A feasibility study on biomass yield and biochemical methane potential. Biomass and Bioenergy, 2018, 119: 429-435. |
54 | Bernas J, Moudrý J, Kopecký M, et al. Szarvasi-1 and its potential to become a substitute for maize which is grown for the purposes of biogas plants in the Czech Republic. Agronomy, 2019, 9(2): 1-21. |
55 | Kopecký M, Mráz P, Kolář L, et al. Effect of fertilization on the energy profit of tall wheatgrass and reed canary grass. Agronomy, 2021, 11(3): 1-14. |
56 | Nazli R I, Kusvuran A, Tansi V, et al. Comparison of cool and warm season perennial grasses for biomass yield, quality, and energy balance in two contrasting semiarid environments. Biomass and Bioenergy, 2020, 139: 1-24. |
57 | Martyniak D, Zurek G, Prokopiuk K. Biomass yield and quality of wild populations of tall wheatgrass [Elymus elongatus (Host.) Runemark]. Biomass and Bioenergy, 2017, 101: 21-29. |
58 | Liu Z W, Wang C. Tall wheatgrass plant guide-USDA. (2008-10-12)[2021-09-03]. https://www.nrcs.usda.gov/Internet/FSE_PLANTMAT ERIALS/publications/wapmcpg8366.pdf. |
59 | United States Department of Agriculture. ‘Jose’ tall wheatgrass. (2013-04-17)[2021-09-03]. https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/nmpmcrb11800.pdf. |
60 | Trammell M A, Butler T J, Word K M, et al. Registration of NFTW6001 tall wheatgrass germplasm. Journal of Plant Registrations, 2016, 10: 166-170. |
61 | Trammell M A, Hopkins A A, Butler T J, et al. Registration of ‘Plainsmen’ tall wheatgrass. Journal of Plant Registrations, 2021, 15: 415-421. |
62 | Smith K F, Kelman W M. Register of Australian herbage plant cultivars Thinopyrum ponticum (Podp.) (tall wheatgrass) cv. Dundas. Australian Journal of Experimental Agriculture, 2000, 40: 119-120. |
63 | Wang W J, Song Y X, Hu W J, et al. Comparison of biomass accumulation related traits in (common wheat×tall wheatgrass) F1 and its parents. Pratacultural Science, 2020, 37(9): 1821-1832. |
汪文佳, 宋运贤, 胡伟娟, 等. (小麦×长穗偃麦草)F1与长穗偃麦草生物量积累相关性状的比较. 草业科学, 2020, 37(9): 1821-1832. | |
64 | Tshewang S, Rengel Z, Siddique K H M, et al. Nitrogen and potassium fertilisation influences growth, rhizosphere carboxylate exudation and mycorrhizal colonisation in temperate perennial pasture grasses. Agronomy, 2020, 10(12): 1-16. |
65 | Butler T J, Muir J P. Dairy manure compost improves soil and increases tall wheatgrass yield. Agronomy Journal, 2006, 98(4): 1090-1096. |
66 | Suyama H, Benes S E, Robinson P H, et al. Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: Field evaluation. Animal Feed Science and Technology, 2007, 135: 329-345. |
67 | Cun G S, Robinson P H, Benes S E. Bioavailability of selenium in ‘Jose’ tall wheatgrass (Thinopyrum ponticum var ‘Jose’) hay as a substitute for sodium selenite in the diets of dairy cattle. Science of the Total Environment, 2015, 518/519: 159-167. |
68 | Undersander D J, Naylor C H. Influence of clipping frequency on herbage yield and nutrient content of tall wheatgrass. Journal of Range Management, 1987, 40(1): 31-35. |
69 | Gillen R L, Berg W A. Response of perennial cool-season grasses to clipping in the southern plains. Agronomy Journal, 2005, 97(1): 125-130. |
70 | Dickeduisbeg M, Laser H, Tonn B, et al. Tall wheatgrass (Agropyron elongatum) for biogas production: Crop management more important for biomass and methane yield than grass provenance. Industrial Crops and Products, 2017, 97: 653-663. |
71 | Wilson R G, Orloff S B, Lancaster D L, et al. Integrating herbicide use and perennial grass revegetation to suppress weeds in noncrop areas. Invasive Plant Science and Management, 2010, 3(1): 81-92. |
72 | Hou R X, Ouyang Z, Liu Z, et al. “Coastal Grass Belt” as paradigm for grass-based livestock husbandry around Bohai bay. Bulletin of the Chinese Academy of Sciences, 2021, 36(6): 652-659. |
侯瑞星, 欧阳竹, 刘振, 等. 环渤海“滨海草带”建设与生态草牧业发展路径. 中国科学院院刊, 2021, 36(6): 652-659. | |
73 | Ouyang Z, Wang H S, Lai J B, et al. New approach of high-quality agricultural development in the yellow river delta. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 145-153. |
欧阳竹, 王竑晟, 来剑斌, 等. 黄河三角洲农业高质量发展新模式. 中国科学院院刊, 2020, 35(2): 145-153. |
[1] | REN Wei, WANG Zhi-feng, XU An-kai. Advancement in the research of salt-alkali tolerance genes in alkaligrass [J]. Acta Prataculturae Sinica, 2010, 19(5): 260-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||