Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 27-38.DOI: 10.11686/cyxb2022446
Previous Articles Next Articles
Zeng-hui LIU1(), Su-jin LU1, Yu-xin WANG1, Chun-hui ZHANG2, Xin YIN1()
Received:
2022-11-10
Revised:
2023-01-04
Online:
2023-09-20
Published:
2023-07-12
Contact:
Xin YIN
Zeng-hui LIU, Su-jin LU, Yu-xin WANG, Chun-hui ZHANG, Xin YIN. Effects of biodiversity on primary productivity and its mechanism in artificially sown clonal plant communities of the Sanjiangyuan region[J]. Acta Prataculturae Sinica, 2023, 32(9): 27-38.
处理 Treatment | df | NE | TICE | TDCE | DE | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
物种丰富度Species richness | 1,14 | 2.058 | 0.1734 | 0.215 | 0.6497 | 1.583 | 0.22890 | 0.018 | 0.8945 |
年份Year | 1,14 | 51.592 | <0.0010 | 8.521 | 0.0112 | 14.385 | 0.00198 | 8.652 | 0.0107 |
丰富度×年份Species richness×year | 1,14 | 6.057 | 0.0274 | 0.822 | 0.3798 | 1.934 | 0.18607 | 1.575 | 0.2300 |
Table 1 The effects of species richness and year on NE, TICE, TDCE and DE
处理 Treatment | df | NE | TICE | TDCE | DE | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
物种丰富度Species richness | 1,14 | 2.058 | 0.1734 | 0.215 | 0.6497 | 1.583 | 0.22890 | 0.018 | 0.8945 |
年份Year | 1,14 | 51.592 | <0.0010 | 8.521 | 0.0112 | 14.385 | 0.00198 | 8.652 | 0.0107 |
丰富度×年份Species richness×year | 1,14 | 6.057 | 0.0274 | 0.822 | 0.3798 | 1.934 | 0.18607 | 1.575 | 0.2300 |
处理 Treatment | df | NE | TICE | TDCE | DE | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
物种组成Species composition | 1,14 | 1.867 | 0.197 | 0.416 | 0.6688 | 0.789 | 0.476 | 0.075 | 0.9286 |
年份Year | 1,14 | 50.607 | <0.001 | 7.700 | 0.0168 | 12.602 | 0.004 | 7.602 | 0.0174 |
物种组成×年份Species composition×year | 1,14 | 2.980 | 0.089 | 0.378 | 0.6929 | 0.883 | 0.439 | 0.776 | 0.4819 |
Table 2 The effects of species composition and year on NE, TICE, TDCE and DE
处理 Treatment | df | NE | TICE | TDCE | DE | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
物种组成Species composition | 1,14 | 1.867 | 0.197 | 0.416 | 0.6688 | 0.789 | 0.476 | 0.075 | 0.9286 |
年份Year | 1,14 | 50.607 | <0.001 | 7.700 | 0.0168 | 12.602 | 0.004 | 7.602 | 0.0174 |
物种组成×年份Species composition×year | 1,14 | 2.980 | 0.089 | 0.378 | 0.6929 | 0.883 | 0.439 | 0.776 | 0.4819 |
Fig.2 The effects of species richness or species composition on net biodiversity effects (NE), trait-independent complementary effects (TICE), trait-dependent complementary effects (TDCE) and dominance effects (DE) in different years
1 | Mori A S, Dee L E, Gonzalez A, et al. Biodiversity-productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11(7): 543-550. |
2 | He M, Pan Y, Zhou G, et al. Grazing and global change factors differentially affect biodiversity-ecosystem functioning relationships in grassland ecosystems. Global Change Biology, 2022, 28(18): 5492-5504. |
3 | Xi N, Chen D, Bahn M, et al. Drought soil legacy alters drivers of plant diversity-productivity relationships in old-field systems. Science Advances, 2022, 8(18): 1-11. |
4 | Tilman D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 1999, 80(5): 1455-1474. |
5 | Isbell F, Balvanera P, Mori A S, et al. Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2022, 22(1): 1-10. |
6 | Grime J P. Competition exclusion in herbaceous vegetation. Nature, 1973, 242: 344-347. |
7 | Gillman L N, Wright S D. The influence of productivity on the species richness of plants: A critical assessment. Ecology, 2006, 87(5): 1234-1243. |
8 | Van R J, Berendse F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 695-700. |
9 | Roscher C, Schumacher J. Positive diversity effects on productivity in mixtures of arable weed species as related to density-size relationships. Journal of Plant Ecology, 2016, 9(6): 792-804. |
10 | Cheng Y, Zhang C, Zhao X, et al. Biomass-dominant species shape the productivity-diversity relationship in two temperate forests. Annals of Forest Science, 2018, 75(4): 97-106. |
11 | Chanteloup P, Bonis A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic and Applied Ecology, 2013, 14(3): 208-216. |
12 | Waide R B, Willig M R, Steiner C F, et al. The relationship between productivity and species richness. Annual Review of Ecology and Systematics, 1999, 30: 257-300. |
13 | Šímová I, Li Y M, Storch D. Relationship between species richness and productivity in plants: The role of sampling effect, heterogeneity and species pool. Journal of Ecology, 2013, 101(1): 161-170. |
14 | Lisner A, Ottaviani G, Klimešová J, et al. The species richness-productivity relationship varies among regions and productivity estimates, but not with spatial resolution. Oikos, 2021, 130(10): 1704-1714. |
15 | Long Z T, Bruno J F, Duffy J E. Biodiversity mediates productivity through different mechanisms at adjacent trophic levels. Ecology, 2007, 88(11): 2821-2829. |
16 | Liu J J, Xu Y, Shan Y X, et al. Biotic and abiotic factors determine species diversity-productivity relationships in mountain meadows. Journal of Plant Ecology, 2021, 14(6): 1175-1188. |
17 | Hillebrand H, Blasius B, Borer E T, et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 2018, 55(1): 169-184. |
18 | Spaak J W, Baert J M, Baird D J, et al. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness. Ecology Letters, 2017, 20: 1315-1324. |
19 | Zhang R, Schellenberg M P, Tian D, et al. Shifting community composition determines the biodiversity-productivity relationship under increasing precipitation and N deposition. Journal of Vegetation Science, 2021, 32(2): e12998. |
20 | Mahaut L, Fort F, Violle C, et al. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Functional Ecology, 2020, 34(1): 287-298. |
21 | Calatayud M L, Forrestel E J, Chang C C, et al. Demystifying dominant species. New Phytologist, 2019, 223(3): 1106-1126. |
22 | Calatayud J, Andivia E, Escudero A, et al. Positive associations among rare species and their persistence in ecological assemblages. Nature Ecology & Evolution, 2020, 4(1): 40-45. |
23 | Creed R P, Cherry R P, Pflaum J R, et al. Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos, 2009, 118(5): 723-732. |
24 | O’Connor N E, Crowe T P. Biodiversity loss and ecosystem functioning: Distinguishing between number and identity of species. Ecology, 2005, 86(7): 1783-1796. |
25 | Liancourt P D, Viard-Crétat F, Michalet R. Contrasting community responses to fertilization and the role of the competitive ability of dominant species. Journal of Vegetation Science, 2009, 20(1): 138-147. |
26 | Hooper D U, Chapin F S, Ewel J J, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 2005, 75(1): 33-35. |
27 | Dong M, Yu F H, Peter A. Ecological consequences of plant clonality. Annals of Botany, 2014, 114(2): 367. |
28 | Kang J J, Zhao W Z, Zhao M. Remediation of blowouts by clonal plants in Maqu degraded alpine grasslands of northwest China. Journal of Plant Research, 2017, 130(2): 291-299. |
29 | Fu J J, Zhou H K, Zhao X Q, et al. Clonal plants and their importance of different alpine grasslands in Haibei region, Qinghai Province. Acta Agrestia Sinica, 2013, 21(6): 1065-1072. |
付京晶, 周华坤, 赵新全, 等. 青海海北不同类型高寒草地的克隆植物及其重要性. 草地学报, 2013, 21(6): 1065-1072. | |
30 | Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412(6842): 72-76. |
31 | Fox J W. Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecology Letters, 2005, 8(8): 846-856. |
32 | Niklaus P A, Baruffol M, He J S, et al. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology, 2017, 98(4): 1104-1116. |
33 | Dong M. Effects of severing rhizome on clonal growth in rhizomatous grass species Psammochloa villosa and Leymus secalinus. Acta Botanica Sinica, 1999, 41(2): 194-198. |
董鸣. 切断根茎对根茎禾草沙鞭和赖草克隆生长的影响. 植物学报, 1999, 41(2): 194-198. | |
34 | Wang J, Xu T, Wang Y, et al. A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs. heterogeneous environments. Functional Ecology, 2021, 35(3): 578-589. |
35 | Gilbert B, Turkington R, Srivastava D S. Dominant species and diversity: Linking relative abundance to controls of species establishment. The American Naturalist, 2009, 174(6): 850-862. |
36 | Saiz H, Bittebiere A K, Benot M L, et al. Understanding clonal plant competition for space over time: A fine-scale spatial approach based on experimental communities. Journal of Vegetation Science, 2016, 27(4): 759-770. |
37 | Hodapp D, Hillebrand H, Blasius B, et al. Environmental and trait variability constrain community structure and the biodiversity-productivity relationship. Ecology, 2016, 97(6): 1463-1474. |
38 | Marquard E, Weigelt A, Temperton V M, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology, 2009, 90(12): 3290-3302. |
39 | Kraft N J B, Godoy O, Levine J M. Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(3): 797-802. |
40 | Gubsch M, Buchmann N, Schmid B, et al. Differential effects of plant diversity on functional trait variation of grass species. Annals of Botany, 2011, 107(1): 157-169. |
41 | Vojtech E, Loreau M, Yachi S, et al. Light partitioning in experimental grass communities. Oikos, 2008, 117(9): 1351-1361. |
42 | Flynn D F B, Mirotchnik N, Jain M, et al. Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-functioning relationships. Ecology, 2011, 92: 1573-1581. |
43 | Gravel D, Bell T, Barbera C, et al. Experimental niche evolution alters the strength of the diversity-productivity relationship. Nature, 2011, 469(7328): 89-94. |
44 | Zuppinger-Dingley D, Schmid B, Petermann J S, et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature, 2014, 515(7525): 108-111. |
45 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000: 263-270. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 263-270. | |
46 | Wang L, Min J X, Shen H F, et al. R and its basic application in agricultural experiment analysis (Ⅱ). China Rice, 2022, 28(1): 95-102. |
王磊, 闵佳鑫, 申红芳, 等. R语言及在农业试验数据分析中的基本应用(二). 中国稻米, 2022, 28(1): 95-102. | |
47 | Van R J, Berendse F. Long-term persistence of a positive plant diversity-productivity relationship in the absence of legumes. Oikos, 2009, 118(1): 101-106. |
48 | Tilman D, Reich P B, Knops J, et al. Diversity and productivity in a long-term grassland experiment. Science, 2001, 294(5543): 843-845. |
49 | Barry K E, Kathryn E, Mommer L, et al. The future of complementarity: Disentangling causes from consequences. Trends in Ecology and Evolution, 2019, 34(2): 167-180. |
50 | Bakker L M, Barry K E, Mommer L, et al. Focusing on individual plants to understand community scale biodiversity effects: the case of root distribution in grasslands. Oikos, 2021, 130(11): 1954-1966. |
51 | Lorentzen S, Roscher C, Schumacher J, et al. Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10(2): 73-87. |
52 | Ishii H, Asano S. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecological Research, 2010, 25: 715-722. |
53 | Anten N P R, Hirose T. Shoot structure, leaf physiology, and daily carbon gain of plant species in a tallgrass meadow. Ecology, 2003, 84: 955-968. |
54 | Maestre F T, Ballini C, Baldy V, et al. On the relative importance of the effects of selection and complementarity as drivers of diversity productivity relationships in Mediterranean shrublands. Oikos, 2008, 117(9): 1345-1350. |
55 | Yuan Z Q, Yu K L, Epstein H, et al. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China. Science of the Total Environment, 2016, 541: 692-700. |
56 | Schöb C, Kerle S, Karley A J, et al. Intraspecific genetic diversity and composition modify species-level diversity-productivity relationships. New Phytologist, 2015, 205(2): 720-730. |
[1] | YAN Jian-cheng, LIANG Cun-zhu, FU Xiao-yue, WANG Wei, WANG Li-xin, JIA Cheng-zhen. The responses of annual plant traits to rainfall variation in steppe and desert regions [J]. Acta Prataculturae Sinica, 2013, 22(1): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||