Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (10): 173-186.DOI: 10.11686/cyxb2022449
Jing-ying JIA1,2(), Bao-bao LIU1,2, Yun MA1,2, Hong-juan DUAN1,2, Xiao-yan CAI1,2()
Received:
2022-11-14
Revised:
2023-02-21
Online:
2023-10-20
Published:
2023-07-26
Contact:
Xiao-yan CAI
Jing-ying JIA, Bao-bao LIU, Yun MA, Hong-juan DUAN, Xiao-yan CAI. Screening of target genes related to milk fat in dairy cows regulated by alfalfa miR168b[J]. Acta Prataculturae Sinica, 2023, 32(10): 173-186.
牛号 ID | 产犊日期 Calving date (year/month/day) | 胎次 Parity | 产犊间隔 Calving interval (d) | 泌乳天数 Lactation days (d) |
---|---|---|---|---|
0001 | 2021/7/19 | 4 | 371 | 120 |
0002 | 2021/7/12 | 4 | 340 | 127 |
0003 | 2021/5/13 | 4 | 364 | 187 |
0004 | 2021/7/12 | 4 | 426 | 127 |
0005 | 2021/5/15 | 4 | 381 | 185 |
0006 | 2021/7/31 | 4 | 364 | 108 |
Table 1 Basic information of sampling cattle
牛号 ID | 产犊日期 Calving date (year/month/day) | 胎次 Parity | 产犊间隔 Calving interval (d) | 泌乳天数 Lactation days (d) |
---|---|---|---|---|
0001 | 2021/7/19 | 4 | 371 | 120 |
0002 | 2021/7/12 | 4 | 340 | 127 |
0003 | 2021/5/13 | 4 | 364 | 187 |
0004 | 2021/7/12 | 4 | 426 | 127 |
0005 | 2021/5/15 | 4 | 381 | 185 |
0006 | 2021/7/31 | 4 | 364 | 108 |
项目 Item | 含量 Content | 营养水平 Nutritient level | 含量 Content |
---|---|---|---|
苜蓿 Alfalfa (%) | 6.00 | 干物质采食量 Dry matter feed intake(kg·d-1) | 24.4 |
玉米青贮 Corn silage (%) | 50.00 | 粗蛋白 Crude protein (CP, %) | 17.2 |
全棉籽 Cottonseed (%) | 1.00 | 中性洗涤纤维 Neutral detergent fiber (NDF, %) | 27.5 |
甜菜颗粒 Beet granules (%) | 1.60 | 粗脂肪 Fat (%) | 3.9 |
湿啤酒糟 Wet beer lees (%) | 10.00 | 酸性洗涤纤维 Acid detergent fiber (ADF, %) | 21.7 |
压片玉米 Tablet corn (%) | 4.00 | 牛奶净能Milk net energy production (NEL, MJ·kg-1) | 7.78 |
预混料 Premix (%) | 26.96 | 淀粉 Starch (%) | 27.5 |
水 H2O (%) | 1.20 | 钙 Ca (%) | 0.53 |
合计 Total (%) | 100.00 | 磷 P (%) | 0.36 |
Table 2 The dietary composition and nutrient level (DM basis)
项目 Item | 含量 Content | 营养水平 Nutritient level | 含量 Content |
---|---|---|---|
苜蓿 Alfalfa (%) | 6.00 | 干物质采食量 Dry matter feed intake(kg·d-1) | 24.4 |
玉米青贮 Corn silage (%) | 50.00 | 粗蛋白 Crude protein (CP, %) | 17.2 |
全棉籽 Cottonseed (%) | 1.00 | 中性洗涤纤维 Neutral detergent fiber (NDF, %) | 27.5 |
甜菜颗粒 Beet granules (%) | 1.60 | 粗脂肪 Fat (%) | 3.9 |
湿啤酒糟 Wet beer lees (%) | 10.00 | 酸性洗涤纤维 Acid detergent fiber (ADF, %) | 21.7 |
压片玉米 Tablet corn (%) | 4.00 | 牛奶净能Milk net energy production (NEL, MJ·kg-1) | 7.78 |
预混料 Premix (%) | 26.96 | 淀粉 Starch (%) | 27.5 |
水 H2O (%) | 1.20 | 钙 Ca (%) | 0.53 |
合计 Total (%) | 100.00 | 磷 P (%) | 0.36 |
miRNAs名称miRNAs name | 引物序列Primer sequence (5'-3') |
---|---|
U6 | F:GCTTCGGCAGCACATATACTAAAAT |
R:CGCTTCACGAATTTGCGTGTCAT | |
mtr-miR168b | F:CATGTGTCGCTTGGTGCAG |
R:AGTGCAGGGTCCGAGGTATT | |
RT:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTTCCCGAC | |
mtr-miR166a | F: CACAGTTCGGACCAGGCTT |
R: AGTGCAGGGTCCGAGGTATT | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGGGAATG | |
mtr-miR168c-3p | F: CATAGACCCGCCTTGCATC |
R: AGTGCAGGGTCCGAGGTATT | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATTCAGTT | |
mtr-miR156f | F: CCGTTGACAGAAGATAGAGAGCAC |
R: ATCCAGTGCAGGGTCCGAGG | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTGCTC | |
mtr-novel-miR54 | F: CCAAGTCCTTGTGTTGCATCTC |
R: ATCCAGTGCAGGGTCCGAGG | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAGATG | |
bta-miR-16a | F: GCCCGTAGCAGCACGTAAAT |
R: TGTCGTGGAGTCGGCAAT | |
RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACCAA |
Table 3 Primer information of miRNAs
miRNAs名称miRNAs name | 引物序列Primer sequence (5'-3') |
---|---|
U6 | F:GCTTCGGCAGCACATATACTAAAAT |
R:CGCTTCACGAATTTGCGTGTCAT | |
mtr-miR168b | F:CATGTGTCGCTTGGTGCAG |
R:AGTGCAGGGTCCGAGGTATT | |
RT:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTTCCCGAC | |
mtr-miR166a | F: CACAGTTCGGACCAGGCTT |
R: AGTGCAGGGTCCGAGGTATT | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGGGGAATG | |
mtr-miR168c-3p | F: CATAGACCCGCCTTGCATC |
R: AGTGCAGGGTCCGAGGTATT | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATTCAGTT | |
mtr-miR156f | F: CCGTTGACAGAAGATAGAGAGCAC |
R: ATCCAGTGCAGGGTCCGAGG | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTGCTC | |
mtr-novel-miR54 | F: CCAAGTCCTTGTGTTGCATCTC |
R: ATCCAGTGCAGGGTCCGAGG | |
RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGAGATG | |
bta-miR-16a | F: GCCCGTAGCAGCACGTAAAT |
R: TGTCGTGGAGTCGGCAAT | |
RT: CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGCACCAA |
基因名称 Gene name | 引物序列 Primer sequence (5'-3') |
---|---|
GAPDH | F: GGCATCGTGGAGGGACTTATG |
R: GCCAGTGAGCTTCCCGTTGAG | |
PPARγ | F: AAAGGAGAGCCTGAACTTGGAG |
R: TCTGAACTGTGCTGTGGCAA | |
SCD1 | F: ACATTGATCCCCACCTGCAA |
R: AAACGTCATTCTGGAACGGC | |
CEBP/β | F: TGGTGAATAGTGCTGCCCAT |
R: GGTGGTAGTTGTGGAAGCCC | |
SREBP1 | F: CAATGTGTGAGAAGGCCAGT |
R:ACAAGGAGCAGGTCACACAG | |
SERINC1 | F: TTGCGGCCGC CAAGCCAAGCGCATAAGT |
R: CCTCGAGCCTGTAGGACAAGGCATC | |
STARD7 | F: TTGCGGCCGC CGTTCTCGGTCCAAGCGTT |
R: CCTCGAGATGGGAGGCGGAGACTGA | |
CPT1A | F: TTGCGGCCGC CTTAAGGGACAAGCGATT |
R: CCTCGAGCAGTCTGATGGAAGGGAA |
Table 4 Primer information
基因名称 Gene name | 引物序列 Primer sequence (5'-3') |
---|---|
GAPDH | F: GGCATCGTGGAGGGACTTATG |
R: GCCAGTGAGCTTCCCGTTGAG | |
PPARγ | F: AAAGGAGAGCCTGAACTTGGAG |
R: TCTGAACTGTGCTGTGGCAA | |
SCD1 | F: ACATTGATCCCCACCTGCAA |
R: AAACGTCATTCTGGAACGGC | |
CEBP/β | F: TGGTGAATAGTGCTGCCCAT |
R: GGTGGTAGTTGTGGAAGCCC | |
SREBP1 | F: CAATGTGTGAGAAGGCCAGT |
R:ACAAGGAGCAGGTCACACAG | |
SERINC1 | F: TTGCGGCCGC CAAGCCAAGCGCATAAGT |
R: CCTCGAGCCTGTAGGACAAGGCATC | |
STARD7 | F: TTGCGGCCGC CGTTCTCGGTCCAAGCGTT |
R: CCTCGAGATGGGAGGCGGAGACTGA | |
CPT1A | F: TTGCGGCCGC CTTAAGGGACAAGCGATT |
R: CCTCGAGCAGTCTGATGGAAGGGAA |
项目 Item | 牛号 ID | 产奶量 DMY (kg·cow-1) | 乳脂率 MFP (%) | 乳蛋白率 MPP (%) | 乳糖率 MLP (%) | 总固形物 Total solids (%) |
---|---|---|---|---|---|---|
高乳脂组High-milk fat group | 0001 | 44.7 | 4.66 | 2.77 | 5.78 | 14.62 |
0002 | 43.8 | 4.50 | 3.30 | 4.32 | 13.44 | |
0003 | 34.9 | 4.27 | 4.21 | 5.21 | 15.21 | |
低乳脂组Low-milk fat group | 0004 | 33.0 | 3.42 | 3.23 | 5.38 | 13.32 |
0005 | 31.2 | 3.32 | 3.78 | 5.59 | 13.88 | |
0006 | 29.8 | 3.27 | 3.72 | 4.79 | 13.19 |
Table 5 Milk yield and quality of high-fat and low-fat dairy cows based on DHI detection
项目 Item | 牛号 ID | 产奶量 DMY (kg·cow-1) | 乳脂率 MFP (%) | 乳蛋白率 MPP (%) | 乳糖率 MLP (%) | 总固形物 Total solids (%) |
---|---|---|---|---|---|---|
高乳脂组High-milk fat group | 0001 | 44.7 | 4.66 | 2.77 | 5.78 | 14.62 |
0002 | 43.8 | 4.50 | 3.30 | 4.32 | 13.44 | |
0003 | 34.9 | 4.27 | 4.21 | 5.21 | 15.21 | |
低乳脂组Low-milk fat group | 0004 | 33.0 | 3.42 | 3.23 | 5.38 | 13.32 |
0005 | 31.2 | 3.32 | 3.78 | 5.59 | 13.88 | |
0006 | 29.8 | 3.27 | 3.72 | 4.79 | 13.19 |
靶基因 Target gene | 与mtr-miR168b种子区域结合位点 Combine site with seed region of mtr-miR168b | 表达组织(表达评分) Expression organization (expression score) |
---|---|---|
CLN8 | 结合位点 Position: 1296 靶基因 Target gene --GCAAGCGG-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(61.92) 乳腺脂肪 Breast fat(73.63) |
CLN8 | 结合位点 Position: 1482 靶基因 Target gene --CCAAGCGA-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(61.92) 乳腺脂肪 Breast fat(73.63) |
SERINC1 | 结合位点 Position: 1559 靶基因 Target gene --CCAAGCGC-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(96.08) 乳腺脂肪 Breast fat(97.83) |
CPTP | 结合位点 Position: 933 靶基因 Target gene --CCAAGCGT-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(73.02) 乳腺脂肪 Breast fat(85.06) 乳腺Mammary gland(88.71) |
STARD7 | 结合位点 Position: 1206 靶基因 Target gene --CCAAGCGT-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(80.79) 乳腺脂肪 Breast fat(88.08) 乳腺 Mammary gland(90.56) |
CPT1A | 结合位点 Position: 2716 靶基因 Target gene --ACAAGCGA-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(85.82) 乳腺脂肪 Breast fat(91.13) 乳腺 Mammary gland(75.98) |
Table 6 mtr-miR168b lipid metabolism target gene and tissue expression score
靶基因 Target gene | 与mtr-miR168b种子区域结合位点 Combine site with seed region of mtr-miR168b | 表达组织(表达评分) Expression organization (expression score) |
---|---|---|
CLN8 | 结合位点 Position: 1296 靶基因 Target gene --GCAAGCGG-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(61.92) 乳腺脂肪 Breast fat(73.63) |
CLN8 | 结合位点 Position: 1482 靶基因 Target gene --CCAAGCGA-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(61.92) 乳腺脂肪 Breast fat(73.63) |
SERINC1 | 结合位点 Position: 1559 靶基因 Target gene --CCAAGCGC-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(96.08) 乳腺脂肪 Breast fat(97.83) |
CPTP | 结合位点 Position: 933 靶基因 Target gene --CCAAGCGT-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(73.02) 乳腺脂肪 Breast fat(85.06) 乳腺Mammary gland(88.71) |
STARD7 | 结合位点 Position: 1206 靶基因 Target gene --CCAAGCGT-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(80.79) 乳腺脂肪 Breast fat(88.08) 乳腺 Mammary gland(90.56) |
CPT1A | 结合位点 Position: 2716 靶基因 Target gene --ACAAGCGA-- miRNA AAGGGCTGGACGTGGTTCGCT | 牛奶 Milk(85.82) 乳腺脂肪 Breast fat(91.13) 乳腺 Mammary gland(75.98) |
1 | Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297. |
2 | Ambros V, Bartel B, Bartel D P, et al. A uniform system for microRNA annotation. RNA, 2003, 9(3): 277-279. |
3 | Hwang H W, Mendell J T. MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 2006, 94(6): 776-780. |
4 | Wahid F, Shehzad A, Khan T, et al. MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta, 2010, 1803(11): 1231-1243. |
5 | Li H Q, Jiang H G, Shen X N, et al. Effects of upregulated LncRNA TUG1 targeted miRNA-194-5p promoting expression of KIAA1199 on proliferation, invasion and EMT of colorectal cancer cells. Chongqing Medicine, 2022, 51(15): 2532-2538. |
李海强, 蒋红钢, 沈徐宁, 等. 上调LncRNA TUG1靶向miRNA-194-5p促进KIAA1199表达对结直肠癌细胞增殖侵袭和EMT的影响. 重庆医学, 2022, 51(15) : 2532-2538. | |
6 | Franczyk B, Gluba-Brzozka A, Olszewski R, et al. miRNA biomarkers in renal disease. International Urology and Nephrology, 2022, 54(3): 575-588. |
7 | Fries J. MicroRNAs as markers to monitor endothelin-1 signalling and potential treatment in renal disease: Carcinoma-proteinuric damage-toxicity. Biology of the Cell, 2019, 111(7): 169-186. |
8 | Yang Y, Wang T, Wang M, et al. Recent Advances in microRNAs related to plant nutrient stress. Molecular Plant Breeding, [2023-05-08].http://kns.cnki.net/kcms/detail/46.1068.S.20210906.1425.008.html. |
杨阳, 王婷, 王明, 等. 植物养分胁迫相关microRNA研究进展. 分子植物育种, [2023-05-08].http://kns.cnki.net/kcms/detail/46.1068.S.20210906.1425.008.html. | |
9 | Zhou Y K, Zhang J H, Zhang W, et al. Value of prenatal ultrasound parameters offetal ductus venosus combined with maternal serum miR-19b indiagnosis of fetal congenitalheart disease. Clinical Misdiagnosis & Mistherapy, 2022, 35(4): 74-78. |
周钰昆, 张金辉, 张伟, 等. 胎儿静脉导管产前超声参数联合母体血清miR-19b对胎儿先天性心脏病的诊断价值. 临床误诊误治, 2022, 35(4): 74-78. | |
10 | Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 2012, 22(1): 107-126. |
11 | Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses. Cell Research, 2015, 25(1): 39-49. |
12 | Zhou Z, Zhou Y, Jiang X M, et al. Decreased HD-MIR2911 absorption in human subjects with the SIDT1 polymorphism fails to inhibit SARS-CoV-2 replication. Cell Discovery, 2020, 6: 63. |
13 | Zhou L K, Zhou Z, Jiang X M, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery, 2020, 6(1): 54. |
14 | Liu J, Wang F, Song H, et al. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. Journal of Nutritional Biochemistry, 2021, 92: 108627. |
15 | Yu W Y, Cai W, Ying H Z, et al. Exogenous plant gma-miR-159a, identified by miRNA library functional screening, ameliorated hepatic stellate cell activation and inflammation via inhibiting GSK-3beta-mediated pathways. Journal of Inflammation Research, 2021, 14: 2157-2172. |
16 | Zhang Z Y. China feed science. Beijing: China Agricultural Press, 2000. |
张子仪. 中国饲料学. 北京: 中国农业出版社, 2000. | |
17 | He F, Li X L, Tong Z Y, et al. Case study of lamb fattening by rotational grazing technique on alfalfa mixtures grassland. Acta Agrestia Sinica, 2020, 28(1): 273-278. |
何峰, 李向林, 仝宗永, 等. 基于紫花苜蓿混播草地的全草型肉羊放牧育肥模式案例研究. 草地学报, 2020, 28(1):273-278. | |
18 | Wang Z, Chen Y, Luo H, et al. Influence of restricted grazing time systems on productive performance and fatty acid composition of longissimus dorsi in growing lambs. Asian-Australas Journal of Animnal Science, 2015, 28(8): 1105-1115. |
19 | Laroche J P, Gervais R, Lapierre H, et al. Milk production and efficiency of utilization of nitrogen, metabolizable protein, and amino acids are affected by protein and energy supplies in dairy cows fed alfalfa-based diets. Journal of Dairy Science, 2022, 105(1): 329-346. |
20 | Dai Q, Hou Z, Gao S, et al. Substitution of fresh forage ramie for alfalfa hay in diets affects production performance, milk composition, and serum parameters of dairy cows. Tropical Animal Health and Production, 2019, 51(2): 469-472. |
21 | Luo Y, Wang P, Wang X, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Science Reporter, 2017, 7(1): 645. |
22 | Wang Y H. Study on three kinds of maize miRNAs absorption: in vivo and in vitro in pig. Chengdu: Sichuan Agricultural University, 2016. |
王宇豪. 三种玉米miRNAs在猪体内、外的吸收规律研究. 成都: 四川农业大学, 2016. | |
23 | Li M, Wei L M, Chen T, et al. Effects of maize RNA on fat deposition of mice. Chinese Journal of Animal Nutrition, 2021, 33(2): 1091-1099. |
黎梦, 魏立民, 陈婷, 等. 玉米RNA对小鼠脂肪沉积的影响. 动物营养学报, 2021, 33(2): 1091-1099. | |
24 | Chen T, Ma F, Peng Y, et al. Plant miR167e-5p promotes 3T3-L1 adipocyte adipogenesis by targeting beta-catenin. In Vitro Cellular and Developmental Biology Animal, 2022, 58(6): 471-479. |
25 | Aquilano K, Ceci V, Gismondi A, et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Communications Biology, 2019, 2: 317. |
26 | Xu K, Ji M, Huang X, et al. Differential regulatory roles of microRNAs in porcine intramuscular and subcutaneous adipocytes. Journal of Agricultural and Food Chemistry, 2020, 68(13): 3954-3962. |
27 | Liang J J, Lin Y Q, Yu Y Y, et al. Cloning and expression of goat CPT1A gene and its correlation with intramuscular fat content. Acta Agriculturae Boreali-Sinica, 2019, 34(5): 231-238. |
梁计峻, 林亚秋, 俞雨阳, 等. 山羊CPT1A基因的克隆表达及肌内脂肪含量的相关性分析. 华北农学报, 2019, 34(5): 231-238. | |
28 | Weber M, Mera P, Casas J, et al. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. The FASEB Journal, 2020, 34(9): 11816-11837. |
29 | Zhao X W, Yang Y X, Huang D W, et al. Comparison of milk fat globule membrane proteins in milk samples of dairy cow and goat. China Animal Husbandry & Veterinary Medicine, 2016, 43(11): 2963-2969. |
赵小伟, 杨永新, 黄冬维, 等. 牛奶和山羊奶中乳脂球膜蛋白的比较研究. 中国畜牧兽医, 2016, 43(11): 2963-2969. | |
30 | Ji X X, Ma Y. Compositons and properties of milk fat globule membrane from five different species milk. China Dairy Industry, 2017, 45(6): 19-23. |
姬晓曦, 马莺. 5种乳源乳脂肪球膜的组成和性质. 中国乳品工业, 2017, 45(6): 19-23. | |
31 | Manoni M, Di Lorenzo C, Ottoboni M, et al. Comparative proteomics of milk fat globule membrane (MFGM) proteome across species and lactation stages and the potentials of MFGM fractions in infant formula preparation. Foods, 2020, 9(9): 1251. |
32 | Mohri S, Takahashi H, Sakai M, et al. Integration of bioassay and non-target metabolite analysis of tomato reveals that beta-carotene and lycopene activate the adiponectin signaling pathway, including AMPK phosphorylation. PLoS One, 2022, 17(7): e267248. |
33 | Viollet B, Mounier R, Leclerc J, et al. Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metabolism, 2007, 33(6): 395-402. |
34 | Graziosi A, Sita G, Corrieri C, et al. Effects of subtoxic concentrations of atrazine, cypermethrin, and vinclozolin on microRNA-mediated PI3K/Akt/mTOR signaling in SH-SY5Y cells. International Journal of Molecular Sciences, 2022, 23(23): 14538. |
35 | Zhou Y, Liu F. Coordination of the AMPK, Akt, mTOR, and p53 pathways under glucose starvation. International Journal of Molecular Sciences, 2022, 23(23): 14945. |
[1] | REN Wei-zhong, GAO Yan-xia, LI Qiu-feng, CAO Yu-feng, LI Jian-guo. Effects of whole corn silage, millet straw and Leymus chinensis combined in total mixed ration fed Holstein cows in the early dry period on its performance and blood biochemical and immune indicators inperinatal period [J]. Acta Prataculturae Sinica, 2019, 28(12): 124-136. |
[2] |
WU Li-zhuan, LUO Jia-jie, ZHANG Bin, LI Li-li, LUO Rui, ZHAN Jin-shun.
Effects of exogenous metallothionein on blood lymphocytes apoptosis and mitochondrial transmembrane potential of China Holstein cows [J]. Acta Prataculturae Sinica, 2013, 22(4): 205-211. |
[3] | XIAO Ding-fu, LUO Jia-jie, WU Zong-ming. Effects of exogenous metallothionein on energy production and incretion of China Holstein cows [J]. Acta Prataculturae Sinica, 2011, 20(1): 183-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||