Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (2): 1-12.DOI: 10.11686/cyxb2023116
Yuan-jun LUO(), Yu-lin PU(), Da-gang YUAN(), Ya-li LI, Hong-yu QIAN
Received:
2023-04-11
Revised:
2023-06-10
Online:
2024-02-20
Published:
2023-12-12
Contact:
Yu-lin PU,Da-gang YUAN
Yuan-jun LUO, Yu-lin PU, Da-gang YUAN, Ya-li LI, Hong-yu QIAN. Evolution of soil phosphorus forms and factors influencing their formation based on 31P nuclear magnetic resonance analyses of degraded alpine wetland[J]. Acta Prataculturae Sinica, 2024, 33(2): 1-12.
湿地特征 Marsh characteristics | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
景观 Landscape | 沼泽 Marsh | 沼泽化草甸 Marsh meadow | 草甸 Meadow | 退化草甸 Degraded meadow |
地表积水 Surface ponding | 永久积水 Permanent ponding | 季节积水 Seasonal ponding | 无积水、地表常年湿润 Moist surface | 无积水 No ponding |
水域占比Water area proportion (%) | ≥60 | 15~60 | ≤15 | 0 |
优势群落 Dominant community | 湿生植物伴随中生植物 Hygrophytes accompanied with mesophytes | 湿、中生植物 Hygro-mesophytes | 中生植物 Mesophytes | 中生植物伴随沙生植物 Mesophytes accompanied with psammophytes |
湿生植物盖度Coverage of hygrophyte (%) | ≥60 | 30~60 | 10~30 | ≤10 |
外部扰动 External disturbance | 无明显扰动 No obvious disturbance | 排水、轻度放牧 Drainage and light grazing | 排水、中度放牧、鼠洞2~5个·m-2。 Drainage, moderate grazing and light rodent damage with rodent burrow 2-5 No.·m-2. | 排水、过度放牧、鼠洞≥5个·m-2。 Drainage, overgrazing and rodent burrow ≥5 No.·m-2. |
Table 1 Grading criteria of marsh degradation
湿地特征 Marsh characteristics | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
景观 Landscape | 沼泽 Marsh | 沼泽化草甸 Marsh meadow | 草甸 Meadow | 退化草甸 Degraded meadow |
地表积水 Surface ponding | 永久积水 Permanent ponding | 季节积水 Seasonal ponding | 无积水、地表常年湿润 Moist surface | 无积水 No ponding |
水域占比Water area proportion (%) | ≥60 | 15~60 | ≤15 | 0 |
优势群落 Dominant community | 湿生植物伴随中生植物 Hygrophytes accompanied with mesophytes | 湿、中生植物 Hygro-mesophytes | 中生植物 Mesophytes | 中生植物伴随沙生植物 Mesophytes accompanied with psammophytes |
湿生植物盖度Coverage of hygrophyte (%) | ≥60 | 30~60 | 10~30 | ≤10 |
外部扰动 External disturbance | 无明显扰动 No obvious disturbance | 排水、轻度放牧 Drainage and light grazing | 排水、中度放牧、鼠洞2~5个·m-2。 Drainage, moderate grazing and light rodent damage with rodent burrow 2-5 No.·m-2. | 排水、过度放牧、鼠洞≥5个·m-2。 Drainage, overgrazing and rodent burrow ≥5 No.·m-2. |
湿地性质 Marsh properties | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
沼泽湿地退化指数Marsh degradation index, MDI | 0.85±0.02a | 0.38±0.04b | 0.23±0.01c | 0.07±0.01d |
植被盖度Vegetation coverage (%) | 83.00±2.50a | 88.33±4.40a | 86.33±1.90a | 50.67±4.70b |
地上生物量Aboveground biomass (g·m-2) | 423.33±58.40a | 551.67±134.17a | 500.00±70.00a | 199.00±28.84b |
根系生物量Root biomass (g·m-2) | 1367.93±169.39a | 1158.93±53.93a | 683.17±71.31b | 521.48±126.55b |
容重Bulk density (g·cm-3) | 0.38±0.03b | 0.40±0.05b | 0.35±0.03b | 0.87±0.07a |
砂粒Sand (%) | 21.84±0.34c | 26.88±0.74a | 24.45±0.43b | 22.71±0.51c |
粉粒Silt (%) | 55.12±2.56b | 45.00±0.54c | 58.33±0.67ab | 60.64±0.26a |
黏粒Clay (%) | 23.05±2.84 a | 28.12±1.21a | 17.22±0.34b | 16.65±0.52b |
pH | 7.33±0.04a | 7.03 ± 0.28a | 6.62±0.67a | 7.25±0.14a |
有机质Organic matter, OM (g·kg-1) | 319.80±14.10a | 309.71±18.93a | 256.93±57.08ab | 158.39±88.89b |
全氮Total nitrogen, TN (g·kg-1) | 15.50±0.72a | 13.01±1.06ab | 11.43±2.34ab | 6.94±3.96b |
全磷Total phosphorus, TP (g·kg-1) | 0.81±0.18ab | 0.96±0.05ab | 1.12±0.11a | 0.75±0.16b |
碱解氮Available nitrogen, AN (mg·kg-1) | 1117.98±33.53a | 1004.03±136.98a | 936.04±197.01a | 626.76±317.84a |
有效磷Available phosphorus, AP (mg·kg-1) | 16.24±3.75b | 21.72±3.02ab | 27.87±4.08a | 15.04±5.9b |
微生物量磷Microbial biomass phosphorus, MBP (mg·kg-1) | 256.50±19.84a | 220.91±50.22a | 246.16±47.07a | 154.23±15.82b |
磷酸单酯酶Phosphomonoesterase (μmol·g-1·h-1) | 14.21±1.88ab | 12.54±2.17ab | 19.43±3.03a | 8.27±3.09b |
磷酸二酯酶Phosphodiesterase (μmol·g-1·h-1) | 12.46±1.13a | 10.61±1.48a | 13.01±3.29a | 6.13±3.62a |
植酸酶Phytase (μmol·g-1·h-1) | 6.64±1.34a | 2.31±0.77b | 2.47±0.88b | 1.24±0.47b |
Table 2 Habitat condition and basic soil properties in differently degraded marshes
湿地性质 Marsh properties | 相对原生沼泽 RPM | 轻度退化沼泽 LDM | 中度退化沼泽 MDM | 重度退化沼泽 HDM |
---|---|---|---|---|
沼泽湿地退化指数Marsh degradation index, MDI | 0.85±0.02a | 0.38±0.04b | 0.23±0.01c | 0.07±0.01d |
植被盖度Vegetation coverage (%) | 83.00±2.50a | 88.33±4.40a | 86.33±1.90a | 50.67±4.70b |
地上生物量Aboveground biomass (g·m-2) | 423.33±58.40a | 551.67±134.17a | 500.00±70.00a | 199.00±28.84b |
根系生物量Root biomass (g·m-2) | 1367.93±169.39a | 1158.93±53.93a | 683.17±71.31b | 521.48±126.55b |
容重Bulk density (g·cm-3) | 0.38±0.03b | 0.40±0.05b | 0.35±0.03b | 0.87±0.07a |
砂粒Sand (%) | 21.84±0.34c | 26.88±0.74a | 24.45±0.43b | 22.71±0.51c |
粉粒Silt (%) | 55.12±2.56b | 45.00±0.54c | 58.33±0.67ab | 60.64±0.26a |
黏粒Clay (%) | 23.05±2.84 a | 28.12±1.21a | 17.22±0.34b | 16.65±0.52b |
pH | 7.33±0.04a | 7.03 ± 0.28a | 6.62±0.67a | 7.25±0.14a |
有机质Organic matter, OM (g·kg-1) | 319.80±14.10a | 309.71±18.93a | 256.93±57.08ab | 158.39±88.89b |
全氮Total nitrogen, TN (g·kg-1) | 15.50±0.72a | 13.01±1.06ab | 11.43±2.34ab | 6.94±3.96b |
全磷Total phosphorus, TP (g·kg-1) | 0.81±0.18ab | 0.96±0.05ab | 1.12±0.11a | 0.75±0.16b |
碱解氮Available nitrogen, AN (mg·kg-1) | 1117.98±33.53a | 1004.03±136.98a | 936.04±197.01a | 626.76±317.84a |
有效磷Available phosphorus, AP (mg·kg-1) | 16.24±3.75b | 21.72±3.02ab | 27.87±4.08a | 15.04±5.9b |
微生物量磷Microbial biomass phosphorus, MBP (mg·kg-1) | 256.50±19.84a | 220.91±50.22a | 246.16±47.07a | 154.23±15.82b |
磷酸单酯酶Phosphomonoesterase (μmol·g-1·h-1) | 14.21±1.88ab | 12.54±2.17ab | 19.43±3.03a | 8.27±3.09b |
磷酸二酯酶Phosphodiesterase (μmol·g-1·h-1) | 12.46±1.13a | 10.61±1.48a | 13.01±3.29a | 6.13±3.62a |
植酸酶Phytase (μmol·g-1·h-1) | 6.64±1.34a | 2.31±0.77b | 2.47±0.88b | 1.24±0.47b |
湿地类型 Marsh types | NaOH-EDTA提取无机磷 NaOH-EDTA Pi (mg·kg-1) | NaOH-EDTA提取有机磷 NaOH-EDTA Po (mg·kg-1) | NaOH-EDTA提取总磷 NaOH-EDTA Pt (mg·kg-1) | 回收率 Recovery (%) |
---|---|---|---|---|
RPM | 135.83±19.36b | 322.79±49.73a | 458.63±67.66b | 58.11±5.19a |
LDM | 169.27±12.11ab | 382.44±22.35a | 551.71±10.35ab | 57.72±3.91a |
MDM | 207.23±9.46a | 454.86±24.79a | 662.09±16.09a | 59.77±4.40a |
HDM | 67.03±11.41c | 375.86±65.08a | 442.89±75.77b | 60.40±6.18a |
Table 3 Concentration and recovery of soil phosphorus in differently degraded marshes determined by NaOH-EDTA
湿地类型 Marsh types | NaOH-EDTA提取无机磷 NaOH-EDTA Pi (mg·kg-1) | NaOH-EDTA提取有机磷 NaOH-EDTA Po (mg·kg-1) | NaOH-EDTA提取总磷 NaOH-EDTA Pt (mg·kg-1) | 回收率 Recovery (%) |
---|---|---|---|---|
RPM | 135.83±19.36b | 322.79±49.73a | 458.63±67.66b | 58.11±5.19a |
LDM | 169.27±12.11ab | 382.44±22.35a | 551.71±10.35ab | 57.72±3.91a |
MDM | 207.23±9.46a | 454.86±24.79a | 662.09±16.09a | 59.77±4.40a |
HDM | 67.03±11.41c | 375.86±65.08a | 442.89±75.77b | 60.40±6.18a |
湿地类型 Marsh types | 磷酸单酯 Phosphate monoester | 磷酸二酯 Phosphate diester | |||||
---|---|---|---|---|---|---|---|
六磷酸肌醇 IHP | 磷酸糖 Sugar phosphate | 单核苷酸 Mononucleotide | 磷酸乙醇胺 Phosphorylethanolamine | 其他单酯 Other monoesters | DNA | 其他二酯 Other diesters | |
RPM | 121.17 | n.d. | 41.55 | n.d. | 187.69 | 15.33 | 55.90 |
LDM | 33.72 | n.d. | 35.58 | n.d. | 254.16 | 11.63 | 34.76 |
MDM | 23.92 | n.d. | 31.59 | n.d. | 366.95 | n.d. | 48.60 |
HDM | 49.74 | 29.96 | n.d. | 94.39 | 274.15 | n.d. | 2.35 |
Table 4 Concentrations of organic phosphorus compounds in differently degraded marshes determined by solution 31P NMR spectroscopy (mg·kg-1)
湿地类型 Marsh types | 磷酸单酯 Phosphate monoester | 磷酸二酯 Phosphate diester | |||||
---|---|---|---|---|---|---|---|
六磷酸肌醇 IHP | 磷酸糖 Sugar phosphate | 单核苷酸 Mononucleotide | 磷酸乙醇胺 Phosphorylethanolamine | 其他单酯 Other monoesters | DNA | 其他二酯 Other diesters | |
RPM | 121.17 | n.d. | 41.55 | n.d. | 187.69 | 15.33 | 55.90 |
LDM | 33.72 | n.d. | 35.58 | n.d. | 254.16 | 11.63 | 34.76 |
MDM | 23.92 | n.d. | 31.59 | n.d. | 366.95 | n.d. | 48.60 |
HDM | 49.74 | 29.96 | n.d. | 94.39 | 274.15 | n.d. | 2.35 |
项目 Item | 植被生物量Vegetation biomass | 土壤养分Soil nutrient | 微生物活性Microbial activity | |
---|---|---|---|---|
PC1 | PC1 | PC1 | PC2 | |
特征根Eigenvalue | 2.154 | 2.917 | 2.104 | 1.254 |
累积方差贡献率Cumulative variance contribution (%) | 71.804 | 97.229 | 52.601 | 83.948 |
植被盖度Vegetation coverage | 0.948 | |||
地上生物量Aboveground biomass | 0.889 | |||
根系生物量Root biomass | 0.682 | |||
有机质Organic matter (OM) | 0.986 | |||
全氮Total nitrogen (TN) | 0.986 | |||
碱解氮Available nitrogen (AN) | 0.985 | |||
微生物量磷Microbial biomass phosphorus (MBP) | 0.749 | -0.159 | ||
磷酸单酯酶Phosphomonoesterase | 0.665 | 0.590 | ||
磷酸二酯酶Phosphodiesterase | 0.678 | 0.590 | ||
植酸酶Phytase | 0.830 | -0.426 |
Table 5 Load of principal components based on the environmental variables
项目 Item | 植被生物量Vegetation biomass | 土壤养分Soil nutrient | 微生物活性Microbial activity | |
---|---|---|---|---|
PC1 | PC1 | PC1 | PC2 | |
特征根Eigenvalue | 2.154 | 2.917 | 2.104 | 1.254 |
累积方差贡献率Cumulative variance contribution (%) | 71.804 | 97.229 | 52.601 | 83.948 |
植被盖度Vegetation coverage | 0.948 | |||
地上生物量Aboveground biomass | 0.889 | |||
根系生物量Root biomass | 0.682 | |||
有机质Organic matter (OM) | 0.986 | |||
全氮Total nitrogen (TN) | 0.986 | |||
碱解氮Available nitrogen (AN) | 0.985 | |||
微生物量磷Microbial biomass phosphorus (MBP) | 0.749 | -0.159 | ||
磷酸单酯酶Phosphomonoesterase | 0.665 | 0.590 | ||
磷酸二酯酶Phosphodiesterase | 0.678 | 0.590 | ||
植酸酶Phytase | 0.830 | -0.426 |
1 | Xiong Y Q, Wu P F, Zhang H Z, et al. Dynamics of soil water conservation during the degradation process of the Zoige Alpine Wetland. Acta Ecologica Sinica, 2011, 31(19): 5780-5788. |
熊远清, 吴鹏飞, 张洪芝, 等. 若尔盖湿地退化过程中土壤水源涵养功能. 生态学报, 2011, 31(19): 5780-5788. | |
2 | Malekmohammadi B, Rahimi B L. Ecological risk assessment of wetland ecosystems using Multi Criteria Decision Making and Geographic Information System. Ecological Indicators, 2014, 41: 133-144. |
3 | Pu Y L, Lang S X, Wang A B, et al. Distribution and functional groups of soil aggregate-associated organic carbon along a marsh degradation gradient on the Zoige Plateau, China. Catena, 2022, 209(2): 105811. |
4 | Cui H, Ou Y, Wang L X, et al. Distribution and release of phosphorus fractions associated with soil aggregate structure in restored wetlands. Chemosphere, 2019, 223: 319-329. |
5 | Luo L, Ye H Y, Zhang D H, et al. The dynamics of phosphorus fractions and the factors driving phosphorus cycle in Zoige Plateau peatland soil. Chemosphere, 2021, 278: 130501. |
6 | Condron L M, Turner B L, Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus. Agriculture and the Environment, 2005, 46: 87-121. |
7 | Wu Y H, Prietzel J, Zhou J, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, Southwestern China. Science China-Earth Sciences, 2014, 57(8): 1860-1868. |
8 | Bai J H, Ye X F, Jia J, et al. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 2017, 188(12): 677-688. |
9 | Wang H, Teng C Y, Li H Y, et al. Microbial community shifts trigger loss of orthophosphate in wetland soils subjected to experimental warming. Plant and Soil, 2018, 424(1/2): 351-365. |
10 | Wang C, Guo J S, Zhang W, et al. Drying-rewetting changes soil phosphorus status and enzymatically hydrolysable organic phosphorus fractions in the water-level fluctuation zone of Three Gorges reservoir. Catena, 2021, 204: 105416. |
11 | Wang L, Yuan J H, Wang Y, et al. Effects of exotic spartina alterniflora invasion on soil phosphorus and carbon pools and associated soil microbial community composition in coastal wetlands. ACS Omega, 2021, 6(8): 5730-5738. |
12 | Qu Y, Wang C, Guo J S, et al. Characteristics of organic phosphorus fractions in soil from water-level fluctuation zone by solution 31P-nuclear magnetic resonance and enzymatic hydrolysis. Environmental Pollution, 2019, 255(2): 113209. |
13 | Wang G P, Liu J S, Wang J D, et al. Soil phosphorus forms and their variations in depressional and riparian freshwater wetlands (Sanjiang Plain, Northeast China). Geoderma, 2006, 132(1): 59-74. |
14 | Wang G P, Zhai Z L, Liu J S, et al. Forms and profile distribution of soil phosphorus in four wetlands across gradients of sand desertification in Northeast China. Geoderma, 2008, 145(1/2): 50-59. |
15 | Qu F Z, Shao H B, Meng L, et al. Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the Yellow River Delta estuary. Land Degradation and Development, 2018, 29(11): 4219-4226. |
16 | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America, 1982, 46(5): 970-976. |
17 | Liu J, Yang J J. Molecular speciation of phosphorus in agricultural soils: Advances over the last 30 years. Acta Pedologica Sinica, 2021, 58(3): 558-567. |
刘瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展. 土壤学报, 2021, 58(3): 558-567. | |
18 | Luo Y J, Huang L M, Yuan D G. Research progress of the evolution trends and controls of soil organic phosphorus speciation during natural pedogenesis based on solution 31P nuclear magnetic resonance. Acta Pedologica Sinica, 2023, 60(1): 23-38. |
罗原骏, 黄来明, 袁大刚. 基于31P NMR的自然成土过程中有机磷组分演变特征及影响因素研究进展. 土壤学报, 2023, 60(1): 23-38. | |
19 | Li M, Zhang J, Wang G Q, et al. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry, 2016, 33: 213-221. |
20 | Zhang W Q, Jin X, Ding Y K, et al. Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses. Environmental Science and Pollution Research, 2016, 23(9): 9046-9053. |
21 | Pant H K, Huang S. Characterization of phosphorus in marshland sediments by 31-phosphorus nuclear magnetic resonance spectroscopy. International Journal of Environmental Science and Technology, 2015, 12(11): 3427-3432. |
22 | Teng C Y, Shen J G, Wang Z, et al. Effect of simulated climate warming on microbial community and phosphorus forms in wetland soils. Environmental Science, 2017, 38(7): 3000-3009. |
腾昌运, 沈建国, 王忠, 等. 模拟气候升温对湿地土壤微生物群落及磷素形态的影响. 环境科学, 2017, 38(7): 3000-3009. | |
23 | Jiang W G, Lv J X, Wang C C, et al. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecological Indicators, 2017, 82: 316-326. |
24 | Pu Y L, Ye C, Zhang S R, et al. Response of the organic carbon fractions and stability of soil to alpine marsh degradation in Zoige, East Qinghai-Tibet Plateau. Journal of Plant Nutrition and Soil Science, 2020, 20(4): 2145-2155. |
25 | Group on Soil Taxonomy of Soil Research Institute of Chinese Academy of Sciences, Cooperative Research Group on Chinese Soil Taxonomy. Chinese soil taxonomy (3rd edtion). Hefei: University of Science and Technology of China Press, 2001. |
中国科学院南京土壤研究所土壤系统分类课题组, 中国土壤系统分类课题研究协作组. 中国土壤系统分类检索(第三版). 合肥: 中国科学技术大学出版社, 2001. | |
26 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
27 | Tabatabai M A, Bremner J M. Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1969, 1: 301-307. |
28 | Browman M G, Tabatabai M A. Phosphodiesterase activity of soils. Soil Science Society of America, 1978, 42(2): 284-290. |
29 | Ye D H, Li T X, Zhang X Z, et al. Rhizosphere P composition, phosphatase and phytase activities of Polygonum hydropiper grown in excess P soils. Biology and Fertility of Soils, 2017, 53(8): 823-836. |
30 | Cade-Menun B J, Liu C W. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters. Soil Science Society of America, 2014, 78(1): 19-37. |
31 | Turner B L, Mahieu N, Condron L M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science Society of America, 2003, 67(2): 497-510. |
32 | Cade-Menun B J. Improved peak identification in 31P-NMR spectra of environmental samples with a standardized method and peak library. Geoderma, 2015, 257: 102-114. |
33 | Touhami D, McDowell R W, Condron L M. Role of organic anions and phosphatase enzymes in phosphorus acquisition in the rhizospheres of legumes and grasses grown in a low phosphorus pasture soil. Plants, 2020, 9(9): 1185. |
34 | Gatiboni L C, Schmitt D E, Tiecher T, et al. Plant uptake of legacy phosphorus from soils without P fertilization. Nutrient Cycling in Agroecosystems, 2021, 119(1): 139-151. |
35 | Jørgensen C, Turner B L, Reitzel K. Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma, 2015, 257: 22-28. |
36 | Yuan H Z, Pan W, Shen J, et al. Species and environmental geochemistry characteristics of organic phosphorus in sediments of a riverine wetland measured by 31P-NMR spectroscopy. Geochemistry International, 2015, 53(12): 1141-1149. |
37 | Hupfer M, Lewandowski J. Oxygen controls the phosphorus release from lake sediments-a long-lasting paradigm in limnology. International Review of Hydrobiology, 2008, 93(4/5): 415-432. |
38 | Somavilla A, Caner L, da Silva I C B, et al. Phosphorus stock depletion and soil C∶N∶P stoichiometry under annual crop rotations and grassland management systems over 13 years. Frontiers in Soil Science, 2022, 2: 10.3389/fsoil.2022.863122. |
39 | Zhai Z, Luo M, Yang Y, et al. Trade-off between microbial carbon use efficiency and microbial phosphorus limitation under salinization in a tidal wetland. Catena, 2022, 209(2): 105809. |
40 | Ebuele V O, Santoro A, Thoss V. Phosphorus speciation by 31P NMR spectroscopy in bracken (Pteridium aquilinum (L.) Kuhn) and bluebell (Hyacinthoides non-scripta (L.) Chouard ex Rothm.) dominated semi-natural upland soil. Science of the Total Environment, 2016, 566/567: 1318-1328. |
41 | Boitt G, Black A, Wakelin S A, et al. Impacts of long-term plant biomass management on soil phosphorus under temperate grassland. Plant and Soil, 2018, 427(1/2): 163-174. |
42 | Zhou J, Wu Y H, Turner B L, et al. Transformation of soil organic phosphorus along the Hailuogou post-glacial chronosequence, southeastern edge of the Tibetan Plateau. Geoderma, 2019, 352: 414-421. |
43 | Ahlgren J, Reitzel K, Danielsson R, et al. Biogenic phosphorus in oligotrophic mountain lake sediments: differences in composition measured with NMR spectroscopy. Water Research, 2006, 40(20): 3705-3712. |
44 | Turner B L, Engelbrecht B. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 2011, 103(1/2/3): 297-315. |
45 | Wei K, Sun T, Tian J H, et al. Soil microbial biomass, phosphatase and their relationships with phosphorus turnover under mixed inorganic and organic nitrogen addition in a Larix gmelinii plantation. Forest Ecology and Management, 2018, 422: 313-322. |
46 | Man X L, Liu B, Li Y. Distribution characteristics of organic carbon,nitrogen and phosphorus in the soils of herbaceous peat swamps in the Xiaoxing’an mountains. Journal of Beijing Forestry University, 2010, 32(6): 48-53. |
满秀玲, 刘斌, 李奕. 小兴安岭草本泥炭沼泽土壤有机碳、氮和磷分布特征. 北京林业大学学报, 2010, 32(6): 48-53. | |
47 | Capek P, Kotas P, Manzoni S, et al. Drivers of phosphorus limitation across soil microbial communities. Functional Ecology, 2016, 30: 1705-1713. |
48 | Chi G Y, Zeng F P, Wang Y, et al. Phosphorus dynamics in litter-soil systems during litter decomposition in larch plantations across the chronosequence. Frontiers in Plant Science, 2022, 13: 1010458. |
[1] | Hong-yu QIAN, Yu-lin PU, Shan-xin LANG, Yi-ran LI, Nan-ding ZHOU. Response of soil organic phosphorus mineralization to alpine meadow degradation and temperature [J]. Acta Prataculturae Sinica, 2023, 32(10): 15-27. |
[2] | LI Xin-Le, HOU Xiang-Yang, MU Huai-Bin, LI Xi-Liang, GUO Feng-Hui. P fertilization effects on the accumulation, transformation and availability of soil phosphorus [J]. Acta Prataculturae Sinica, 2015, 24(8): 218-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||