Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 130-141.DOI: 10.11686/cyxb2023316

Previous Articles    

Induced formation method and germination characteristics of chlamydospores by Fusarium oxysporum f. sp. medicaginis

Xiang-ling FANG(), Shi-yang XU, Zhi-biao NAN   

  1. Center for Grassland Microbiome,State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems,College of Pastoral Agriculture Science and Technology,Lanzhou University,Lanzhou 730020,China
  • Received:2023-09-01 Revised:2023-09-28 Online:2024-07-20 Published:2024-04-08
  • Contact: Xiang-ling FANG

Abstract:

Chlamydospores are the main survival structure of Fusarium oxysporum in soil, and the number and germination status of chlamydospores in soil directly affects the occurrence and severity of the disease. In this study, we established a system to induce chlamydospore production by F. oxysporum f. sp. medicaginis (Fom) by culturing the pathogen on synthetic low nutrient agar (SNA) medium, synthetic low nutrient agar with filter (SNAF) medium, or in two-salt solution (KH2PO4 and MgSO4·7H2O) with glucose or magnesium carbonate at a range of concentrations. The chlamydospore induction system was verified, and the effects of different carbon and nitrogen sources on chlamydospore germination were studied. The T6 and T9 strains of Fom produced many chlamydospores after static culture for 7 days in the two-salt solution with glucose at 2 mg·L–1, producing 4.2×105 and 5.1×105 chlamydospores per mL, respectively. Both T6 and T9 produced more chlamydospores under static culture than under shaking culture (4.2- and 2.8- times, respectively, at 7 days of culture). All Fom strains produced many chlamydospores after 7 days of culture in the two-salt solution, with a rapid increase of 2.3- times compared with 3 days, followed by slow increases at 14 and 21 days, with an average increase of only 1.2- times from 7 to 21 days of culture. Comparing all the carbon and nitrogen sources, glucose and ammonium chloride had the strongest promoting effects on the germination and germ tube growth of chlamydospores, whereas lactose and urea had the weakest effects. The results show that chlamydospore formation by Fomstrains requires a trace amount of a carbon source and a low-oxygen environment, and the germination and growth of chlamydospores require suitable carbon and nitrogen sources. These findings provide new insights into effective management of soil-borne diseases in alfalfa through controlling the primary infection source, i.e., the chlamydospores of the pathogen.

Key words: Fusarium oxysporum, soilborne fungal pathogen, survival structure, primary inoculum, chlamydospore