Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 46-54.DOI: 10.11686/cyxb2023453
Previous Articles Next Articles
Ge-ge QIN1(), Lian HAN2, Xin-yu HE1, Yu-sheng WANG1, Fan REN1, Zi-shun CHEN2, Cun-yu ZHOU1, Chao-dong YANG1, De-bao TAN3, Xia ZHANG1()
Received:
2023-11-27
Revised:
2024-01-31
Online:
2024-10-20
Published:
2024-07-15
Contact:
Xia ZHANG
Ge-ge QIN, Lian HAN, Xin-yu HE, Yu-sheng WANG, Fan REN, Zi-shun CHEN, Cun-yu ZHOU, Chao-dong YANG, De-bao TAN, Xia ZHANG. Anatomical and histochemical features of the wetland plants Eremochloa ophiuroides and Hemarthria altissima[J]. Acta Prataculturae Sinica, 2024, 33(10): 46-54.
结构Structures | 假俭草E. ophiuroides | 牛鞭草H. altissima |
---|---|---|
不定根内皮层Endodermis of adventitious roots | 细胞壁呈马蹄形增厚,具凯氏带U-shaped thicken of the cell wall, and with Casparian bands | 细胞壁呈马蹄形增厚,具凯氏带U-shaped thicken of the cell wall, and with Casparian bands |
外皮层Exodermis | 增厚的单层细胞,具凯氏带 Thicken uniseriate cells layer, and with Casparian bands | 增厚的双层细胞,具凯氏带Thicken biseriate cells layer, and with Casparian bands |
中柱Stele | 35~40个原生木质部,厚壁细胞近原生木质部和后生木质部35-40 protoxylem, sclerenchyma near protoxylem and metaxylem | 14~16个原生木质部,木质部厚壁细胞14-16 protoxylem, xylem sclerenchyma |
根部通气组织Root aerenchyma | 裂-溶生性通气组织Schizo-lysogenic aerenchyma | 裂-溶生性通气组织Schizo-lysigenouaerenchyma |
内皮层和外皮层Endodermis and exodermis | 木栓质和木质素沉积Suberin and lignin deposition | 木栓质和木质素沉积Suberin and lignin deposition |
水平茎Stem | 匍匐茎Stolons | 匍匐茎,根状茎Stolons, rhizomes |
茎部通气组织Stem aerenchyma | 髓腔、皮层气腔Pith cavity, cortical aerenchyma | 髓腔Pith cavity |
周缘机械组织层Peripheral mechanical ring | 不连续、仅木质化Discontinuous, only lignified | 连续、栓质化,内含同化组织(匍匐茎)和维管束Continuous, suberized layers, chlorenchyma in stolons, and vascular bundle sheath |
厚壁机械组织环Sclerenchyma ring | 木质化Lignified | 木质化 (根状茎),匍匐茎中未发现Lignified sclerenchyma ring in rhizomes, absent in stolons |
Table 1 Comparison of anatomy and histochemistry of E. ophiuroides and H. altissima
结构Structures | 假俭草E. ophiuroides | 牛鞭草H. altissima |
---|---|---|
不定根内皮层Endodermis of adventitious roots | 细胞壁呈马蹄形增厚,具凯氏带U-shaped thicken of the cell wall, and with Casparian bands | 细胞壁呈马蹄形增厚,具凯氏带U-shaped thicken of the cell wall, and with Casparian bands |
外皮层Exodermis | 增厚的单层细胞,具凯氏带 Thicken uniseriate cells layer, and with Casparian bands | 增厚的双层细胞,具凯氏带Thicken biseriate cells layer, and with Casparian bands |
中柱Stele | 35~40个原生木质部,厚壁细胞近原生木质部和后生木质部35-40 protoxylem, sclerenchyma near protoxylem and metaxylem | 14~16个原生木质部,木质部厚壁细胞14-16 protoxylem, xylem sclerenchyma |
根部通气组织Root aerenchyma | 裂-溶生性通气组织Schizo-lysogenic aerenchyma | 裂-溶生性通气组织Schizo-lysigenouaerenchyma |
内皮层和外皮层Endodermis and exodermis | 木栓质和木质素沉积Suberin and lignin deposition | 木栓质和木质素沉积Suberin and lignin deposition |
水平茎Stem | 匍匐茎Stolons | 匍匐茎,根状茎Stolons, rhizomes |
茎部通气组织Stem aerenchyma | 髓腔、皮层气腔Pith cavity, cortical aerenchyma | 髓腔Pith cavity |
周缘机械组织层Peripheral mechanical ring | 不连续、仅木质化Discontinuous, only lignified | 连续、栓质化,内含同化组织(匍匐茎)和维管束Continuous, suberized layers, chlorenchyma in stolons, and vascular bundle sheath |
厚壁机械组织环Sclerenchyma ring | 木质化Lignified | 木质化 (根状茎),匍匐茎中未发现Lignified sclerenchyma ring in rhizomes, absent in stolons |
1 | Li S D. Ecological environment in the Yangtze River valley and sustainable development. Research of Soil and Water Consenation, 1999, 6(4): 15-18. |
李树德. 长江流域生态环境与可持续发展. 水土保持研究, 1999, 6(4): 15-18. | |
2 | Zhang J C, Peng B Z. Study on riparian zone and the restoration and rebuilding of its degraded ecosystem. Acta Ecologica Sinica, 2003, 23(1): 56-63. |
张建春, 彭补拙. 河岸带研究及其退化生态系统的恢复与重建. 生态学报, 2003, 23(1): 56-63. | |
3 | Zhong R H, He X B, Bao Y H, et al. Role of Cynodon dactylon L. and Hemarthria altissima in wave attenuation and erosion control.Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2): 133-140. |
钟荣华, 贺秀斌, 鲍玉海, 等. 狗牙根和牛鞭草的消浪减蚀作用. 农业工程学报, 2015, 31(2): 133-140. | |
4 | Xu S, Zhang X Q, Wu Y Q, et al. Review on study and application of Hemarthria. Grassland of China, 2001, 23(4): 54-59. |
徐胜, 张新全, 吴彦奇, 等. 牛鞭草研究与应用概况. 中国草地, 2001, 23(4): 54-59. | |
5 | Liu Y M, Xun H F, Ding X P, et al. Evaluation of salinity tolerance of 55 centipede grass ecotypes. Pratacultural Science, 2017, 34(11): 2261-2271. |
刘一明, 郇恒福, 丁西朋, 等. 55份不同生态型假俭草的耐盐性评价. 草业科学, 2017, 34(11): 2261-2271. | |
6 | Vervuren P J A, Blom C, Kroon H D. Extreme flooding events on the Rhine and the survival and distribution of riparian plant species. Journal of Ecology, 2003, 91(1): 135-146. |
7 | Finlayson C M. Plant ecology of Australia’s tropical floodplain wetlands: A review. Annals of Botany, 2005, 96(4): 541-555. |
8 | Glenz C, Schlaepfer R, Kierast R. Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management, 2006, 235(1/3): 1-13. |
9 | DeSimone, Muller E, Junk W J, et al. Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biology, 2002, 4(4): 515-522. |
10 | Parolin P. Submerged in darkness: Adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annals of Botany, 2009, 103(2): 359-376. |
11 | Parolin P, De Simone O, Haase K, et al. Central Amazonian floodplain forests: Tree adaptations in a pulsing system. Botanical Review, 2004, 70(3): 357-380. |
12 | Parolin P, Armbruster N, Junk W J. Two Amazonian floodplain trees react differently to periodical flooding. Tropical Ecology, 2006, 47(2): 243-250. |
13 | Armstrong J, Armstrong W. Rice and phragmites: Effect of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. American Journal Botany, 2001, 88(8): 1359-1371. |
14 | Engloner A I. Structure, growth dynamics and biomass of reed (Phragmites australis)-A review. Flora, 2009, 204(5): 331-346. |
15 | Engloner A I, Gubeso G. Histological investigations of reed in Ingóiberek (Kis-Balaton Reservoir System). Botanikai Közleményck, 2001, 88(1): 39-47. |
16 | Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96(4): 501-505. |
17 | Justin S H, Armstrong W. The anatomical characteristics of roots and plant response to soil flooding. New Phytologist, 1987, 106(3): 465-495. |
18 | Kotula L, Steudle E. Measurements of oxygen permeability coefficient of rice (Oryza sativa L.) roots using a new perfusion technique. Journal of Experimental Botany, 2009, 60(2): 567-580. |
19 | Soukip A, Votrubova O, ˇCíˇZLOVá H. Development of anatomical structure of roots of Phragmites australis. New Phytologist, 2002, 53(2): 277-287. |
20 | Zhang X, Hu L J, Zhou C Y, et al. Studies on anatomy and apoplastic barrier histochemistry characters of Oenanthe javanica (BI.)DC. adapted to wetland environment. China Vegetables, 2016, 1(7): 52-58. |
张霞, 胡露洁, 周存宇, 等. 水芹适应湿地环境的解剖和屏障结构组织化学特征研究. 中国蔬菜, 2016, 1(7): 52-58. | |
21 | Colmer T D, Gibberd M R, Wiengweera A, et al. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solutions. Journal of Experimental Botany, 1998, 49(325): 1431-1436. |
22 | Armstrong J, Armstrong W, Beckett P M, et al. Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturi-induced convections of Phragmites australis (Cav.) Trin. ex Steud. Aquatic Botany, 1996, 54(2/3): 177-197. |
23 | Metcalfe C R. Anatomy of the Monocotyledons. I. Gramineae. London, Oxford: Clarendon Press, 1960, 133(3467): 1817-1818. |
24 | Soukup A, Voukupva O, ˇCíˇZková H. Internal segmentation of rhizomes of Phragmites australis: protection of the internal aeration system against being flooded. New Phytologist, 2000, 145(1): 71-75. |
25 | Sangster A G. Silicon distribution and anatomy of the grass rhizome, with special reference to Miscanthus sacchariflorus (Maxim.) Hackel. Annals of Botany, 1985, 55(5): 621-634. |
26 | Jensen W A, Francisco S. Botanical histochemistry-Principles and practice. Science, 1963, 140(3567): 634-635. |
27 | Brundrett M C, Kendrick B, Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic Histochem, 1991, 66(3): 111-116. |
28 | Brundrett M C, Enstpne D E, Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146(2): 133-142. |
29 | Soukup A, Armstrong W, Schreiber L, et al. Apoplastic barriers to radial oxygen loss and solute penetration: A chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytologist, 2007, 173(2): 264-278. |
30 | Ranathunge K, Lin J X, Steudle E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environment, 2011, 34(8): 1223-1240. |
31 | Zhang X, Yang C D, Ning G G. The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994. |
张霞, 杨朝东, 宁国贵. 狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究. 湖北农业科学, 2013, 52(20):4991-4994. | |
32 | Yang C D, Zhang X, Li J K, et al. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.). Journal of Botany, 2014, 2014(1): 1-9. |
33 | Yang C D, Li S F, Deng S M, et al. Study of the anatomy and apoplastic barrier characteristics of Imperata cylindrica. Acta Prataculturae Sinica, 2015, 24(3): 213-218. |
杨朝东, 李守峰, 邓仕明, 等. 白茅解剖结构和屏障结构特征研究. 草业学报, 2015, 24(3): 213-218. | |
34 | Wang X E, Zhang F, Zhang X, et al. Anatomy and histochemistry features of Phalaris arundinacea adapted to wetland environments. Acta Prataculturae Sinica, 2019, 28(1): 86-94. |
王晓娥, 张梵, 张霞, 等. 虉草适应湿地环境的解剖结构和组织化学特征研究. 草业学报, 2019, 28(1): 86-94. |
[1] | Hai ZHENG, Ying WANG, Juan XU, Ting-ting ZHU, Ge-ge QIN, Cun-yu ZHOU, Chao-dong YANG, De-bao TAN, Xia ZHANG, Hong-bo WEI. Anatomical and histochemical features of amphibious Cyperus rotundus [J]. Acta Prataculturae Sinica, 2024, 33(6): 155-164. |
[2] | Rui-rui YAO, Huan LIU, Gui-qin ZHAO, Jing-long WANG, Qi-yu WANG, Kai DONG, Ran ZHANG. Effects of seed storage time on seed germination and cytological structure of covered oats and naked oats [J]. Acta Prataculturae Sinica, 2024, 33(2): 154-163. |
[3] | Jiong-rui TAN, Tong-gang ZHA, Ze-yu ZHANG, Xiao-xia ZHANG, Hong-mei TENG, Ling-li WANG, Li-li ZHAO, Ao WANG, Xin-yao WANG. Leaf structure, physiology and transcriptome analysis of Salsola collina in response to drought stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 75-88. |
[4] | Wen-wu QIAN, Peng GUO, Hui-sen ZHU, Shi-min ZHANG, De-ying LI. Responses of leaf epidermis, anatomical structure and photosynthetic characteristics of Poa pratensis to different nitrogen application level [J]. Acta Prataculturae Sinica, 2023, 32(1): 131-143. |
[5] | Meng-yu DONG, Jin-xin WANG, Meng WU, Zi-yao ZHOU, Shun CHENG, Yan-hui LI. Leaf structure and photosynthetic characteristics of two species of Hesperis [J]. Acta Prataculturae Sinica, 2022, 31(7): 172-184. |
[6] | WANG Zhen-sheng, LI Yan-xue, YU Cheng-long, DI Xiao-lin, CHEN Peng, TIAN Jing-yao, WANG Jing-hong. Changes in root morphology and anatomical structure of Poa pratensis under different simulated precipitation rates [J]. Acta Prataculturae Sinica, 2020, 29(10): 70-80. |
[7] | CHEN Bin, LI Hong-yao, LIU Xiao-wei, XIA Bin, SUN Shao-wen, SUN Ying, HE Miao. Effects of different light intensities on morphogenesis and ultrastructure of Gibasis pellucida leaf [J]. Acta Prataculturae Sinica, 2019, 28(7): 175-185. |
[8] | WANG Xiao-e, ZHANG Fan, ZHANG Xia, ZHOU Cun-yu, YANG Chao-dong. Anatomy and histochemistry features of Phalaris arundinacea adapted to wetland environments [J]. Acta Prataculturae Sinica, 2019, 28(1): 86-94. |
[9] | ZHANG Yong-Mei, MA Hui-Ling, TANG Yun-Zhi. Structural changes in leaves in Medicago sativa infected with Erysiphe pisi [J]. Acta Prataculturae Sinica, 2017, 26(2): 88-94. |
[10] | YANG Chao-Dong, LI Shou-Feng, YAO Lan, AI Xun-Ru, CAI Xiao-Dong, ZHANG Xia. A study of anatomical structure and apoplastic barrier characteristics of Hydrocotyle sibthorpioides [J]. Acta Prataculturae Sinica, 2015, 24(7): 139-145. |
[11] | YANG Chaodong, LI Shoufeng, DENG Shiming, YAO Lan, YUAN Longyi, ZHANG Xia. Study of the anatomy and apoplastic barrier characteristics of Imperata cylindrica [J]. Acta Prataculturae Sinica, 2015, 24(3): 213-218. |
[12] | CHENG Xin-yu,LIU Mei,ZHANG Xin-xin,WANG Chen,LI Bin-sheng. Vegetative organ structures of Ranunculaceae in Northeastern China and notes on systematic implications [J]. Acta Prataculturae Sinica, 2014, 23(3): 62-74. |
[13] | LI Shan, JIANG Qiao-feng, LIU Jian-xiu. Variation of Al tolerance in the germplasm resources of centipedegrass in China [J]. Acta Prataculturae Sinica, 2012, 21(3): 99-105. |
[14] | YUAN Xue-jun, WANG Zhi-yong, ZHENG Yi-qi, LIU Jian-xiu, SHE Jian-ming. Acquisition and identification of cold-resistant somatic mutants of centipedegrass [J]. Acta Prataculturae Sinica, 2011, 20(6): 237-244. |
[15] | ZHANG Fang, WANG Zhou, ZONG Jun-qin, LIU Jian-xiu, SHE Jian-ming. Establishment of an Agrobacterium mediated genetic transformation system for Eremochloa ophiuroides [J]. Acta Prataculturae Sinica, 2011, 20(2): 184-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||