Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (10): 151-163.DOI: 10.11686/cyxb2024444
Zhi-yun TANG1(
), Wen-kai WANG2, Guan-lan LIU1, Pei-wen GU1(
)
Received:2024-11-15
Revised:2025-01-22
Online:2025-10-20
Published:2025-07-11
Contact:
Pei-wen GU
Zhi-yun TANG, Wen-kai WANG, Guan-lan LIU, Pei-wen GU. Optimization of culture conditions for the sophoridine-producing new fungal species Achaetomium sophor strain HY17 isolated from seeds of Sophora alopecuroides[J]. Acta Prataculturae Sinica, 2025, 34(10): 151-163.
| 目标基因Target gene | 引物名称Primer | 引物序列Primer sequences (5′-3′) | 退火温度Annealing temperature (℃) | 参考文献Reference |
|---|---|---|---|---|
| ITS | ITS4 | TCCTCCGCTTATTGATATGC | 55 | [ |
| ITS5 | GGAAGTAAAAGTCGTAACAAGG | |||
| LSU | LSU1Fd | GRATCAGGTAGGRATACCCG | 55 | [ |
| LR5 | TCCTGAGGGAAACTTCG | |||
| TUB2 | Bt2a | GGTAACCAAATCGGTGCTGCTTTC | 58 | [ |
| Bt2b | ACCCTCAGTGTAGTGACCCTTGGC |
Table 1 Primers used for the amplification of ITS, LSU, and TUB2 genes
| 目标基因Target gene | 引物名称Primer | 引物序列Primer sequences (5′-3′) | 退火温度Annealing temperature (℃) | 参考文献Reference |
|---|---|---|---|---|
| ITS | ITS4 | TCCTCCGCTTATTGATATGC | 55 | [ |
| ITS5 | GGAAGTAAAAGTCGTAACAAGG | |||
| LSU | LSU1Fd | GRATCAGGTAGGRATACCCG | 55 | [ |
| LR5 | TCCTGAGGGAAACTTCG | |||
| TUB2 | Bt2a | GGTAACCAAATCGGTGCTGCTTTC | 58 | [ |
| Bt2b | ACCCTCAGTGTAGTGACCCTTGGC |
变量 Codes | 因素 Factors | 水平Levels | |
|---|---|---|---|
| -1 | 1 | ||
| X1 | L-赖氨酸 L-lysine | 1.00 | 2.00 |
| X2 | L-哌啶酸 L-piperidinic acids | 0.08 | 0.16 |
| X3 | α-酮戊二酸 α-ketoglutaric acid | 0.01 | 0.02 |
| X4 | 苯丙氨酸 Phenylalanine | 2.00 | 5.00 |
| X5 | 丙酮酸 Pyruvate | 1.00 | 4.00 |
| X6 | 水杨酸 Salicylate | 1.00 | 2.00 |
| X7 | 茉莉酸甲酯Methyl jasmonate | 0.10 | 0.50 |
| X8 | 种子提取物 Seed extract | 2.00 | 5.00 |
Table 2 PB design factor levels
变量 Codes | 因素 Factors | 水平Levels | |
|---|---|---|---|
| -1 | 1 | ||
| X1 | L-赖氨酸 L-lysine | 1.00 | 2.00 |
| X2 | L-哌啶酸 L-piperidinic acids | 0.08 | 0.16 |
| X3 | α-酮戊二酸 α-ketoglutaric acid | 0.01 | 0.02 |
| X4 | 苯丙氨酸 Phenylalanine | 2.00 | 5.00 |
| X5 | 丙酮酸 Pyruvate | 1.00 | 4.00 |
| X6 | 水杨酸 Salicylate | 1.00 | 2.00 |
| X7 | 茉莉酸甲酯Methyl jasmonate | 0.10 | 0.50 |
| X8 | 种子提取物 Seed extract | 2.00 | 5.00 |
项目 Item | 因子 Factors | 水平 Levels | ||
|---|---|---|---|---|
| -1 | 0 | 1 | ||
| X1 | L-赖氨酸 L-lysine | 0.50 | 1.00 | 1.50 |
| X2 | L-哌啶酸 L-piperidinic acids | 0.04 | 0.08 | 0.12 |
| X4 | 苯丙氨酸 Phenylalanine | 0.50 | 2.00 | 3.50 |
Table 3 Box-Behnken factors and levels
项目 Item | 因子 Factors | 水平 Levels | ||
|---|---|---|---|---|
| -1 | 0 | 1 | ||
| X1 | L-赖氨酸 L-lysine | 0.50 | 1.00 | 1.50 |
| X2 | L-哌啶酸 L-piperidinic acids | 0.04 | 0.08 | 0.12 |
| X4 | 苯丙氨酸 Phenylalanine | 0.50 | 2.00 | 3.50 |
序号 No. | 因素 Factors | 菌丝干重 Mycelium dry weight (g) | 碱产率 Alkaloid yield (mg·g-1) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |||
| 1 | 1 | 0.16 | 0.02 | 5 | 1 | 1 | 0.1 | 5 | 0.81 | 1.94 |
| 2 | 1 | 0.80 | 0.01 | 2 | 1 | 1 | 0.1 | 2 | 1.04 | 1.34 |
| 3 | 2 | 0.08 | 0.02 | 5 | 1 | 2 | 0.5 | 5 | 1.65 | 1.18 |
| 4 | 1 | 0.16 | 0.01 | 5 | 4 | 1 | 0.5 | 5 | 1.03 | 1.27 |
| 5 | 2 | 0.08 | 0.02 | 5 | 4 | 1 | 0.1 | 2 | 1.06 | 1.23 |
| 6 | 2 | 0.08 | 0.01 | 2 | 4 | 1 | 0.5 | 5 | 2.51 | 1.67 |
| 7 | 2 | 0.16 | 0.01 | 5 | 4 | 2 | 0.1 | 2 | 0.96 | 1.30 |
| 8 | 1 | 0.08 | 0.02 | 2 | 4 | 2 | 0.1 | 5 | 1.33 | 2.05 |
| 9 | 2 | 0.16 | 0.01 | 2 | 1 | 2 | 0.1 | 5 | 1.33 | 2.05 |
| 10 | 1 | 0.16 | 0.02 | 2 | 4 | 2 | 0.5 | 2 | 0.49 | 2.82 |
| 11 | 1 | 0.08 | 0.01 | 5 | 1 | 2 | 0.5 | 2 | 0.64 | 1.98 |
| 12 | 2 | 0.16 | 0.02 | 2 | 1 | 1 | 0.5 | 2 | 0.89 | 1.51 |
Table 4 Results and analysis of Plackett-Burman tests
序号 No. | 因素 Factors | 菌丝干重 Mycelium dry weight (g) | 碱产率 Alkaloid yield (mg·g-1) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |||
| 1 | 1 | 0.16 | 0.02 | 5 | 1 | 1 | 0.1 | 5 | 0.81 | 1.94 |
| 2 | 1 | 0.80 | 0.01 | 2 | 1 | 1 | 0.1 | 2 | 1.04 | 1.34 |
| 3 | 2 | 0.08 | 0.02 | 5 | 1 | 2 | 0.5 | 5 | 1.65 | 1.18 |
| 4 | 1 | 0.16 | 0.01 | 5 | 4 | 1 | 0.5 | 5 | 1.03 | 1.27 |
| 5 | 2 | 0.08 | 0.02 | 5 | 4 | 1 | 0.1 | 2 | 1.06 | 1.23 |
| 6 | 2 | 0.08 | 0.01 | 2 | 4 | 1 | 0.5 | 5 | 2.51 | 1.67 |
| 7 | 2 | 0.16 | 0.01 | 5 | 4 | 2 | 0.1 | 2 | 0.96 | 1.30 |
| 8 | 1 | 0.08 | 0.02 | 2 | 4 | 2 | 0.1 | 5 | 1.33 | 2.05 |
| 9 | 2 | 0.16 | 0.01 | 2 | 1 | 2 | 0.1 | 5 | 1.33 | 2.05 |
| 10 | 1 | 0.16 | 0.02 | 2 | 4 | 2 | 0.5 | 2 | 0.49 | 2.82 |
| 11 | 1 | 0.08 | 0.01 | 5 | 1 | 2 | 0.5 | 2 | 0.64 | 1.98 |
| 12 | 2 | 0.16 | 0.02 | 2 | 1 | 1 | 0.5 | 2 | 0.89 | 1.51 |
因素 Factors | 贡献度 Contribution (%) | 自由度 df | 均方 Mean square | F值 F-value | P值 P-value |
|---|---|---|---|---|---|
| X1 | 18.03 | 1 | 0.50 | 21.60 | 0.0143 |
| X2 | 14.12 | 1 | 0.25 | 15.14 | 0.0527 |
| X4 | 12.69 | 1 | 0.23 | 8.67 | 0.0635 |
| X5 | 9.20 | 1 | 0.31 | 6.47 | 0.1213 |
| X7 | 7.79 | 1 | 1.38 | 15.41 | 0.1111 |
| X1X3 | 1.38 | 1.38 | 15.41 | 0.01 | 0.1196 |
| X1X4 | 0.32 | 0.3159 | 3.52 | 0.11 | |
| 残差Residual | 0.45 | 0.0898 | |||
| 综合Cor total | 2.63 |
Table 5 Effect analysis of each experimental factor
因素 Factors | 贡献度 Contribution (%) | 自由度 df | 均方 Mean square | F值 F-value | P值 P-value |
|---|---|---|---|---|---|
| X1 | 18.03 | 1 | 0.50 | 21.60 | 0.0143 |
| X2 | 14.12 | 1 | 0.25 | 15.14 | 0.0527 |
| X4 | 12.69 | 1 | 0.23 | 8.67 | 0.0635 |
| X5 | 9.20 | 1 | 0.31 | 6.47 | 0.1213 |
| X7 | 7.79 | 1 | 1.38 | 15.41 | 0.1111 |
| X1X3 | 1.38 | 1.38 | 15.41 | 0.01 | 0.1196 |
| X1X4 | 0.32 | 0.3159 | 3.52 | 0.11 | |
| 残差Residual | 0.45 | 0.0898 | |||
| 综合Cor total | 2.63 |
试验号 No. | 因素 Factors (g·L-1) | 菌丝干重 Mycelium dry weight (g) | 碱产率 Alkaloid yield (mg·g-1) | ||
|---|---|---|---|---|---|
L-赖氨酸 L-lysine | L-哌啶酸 L-piperidinic acids | 苯丙氨酸 Phenylalanine | |||
| 1 | 0.75 | 0.06 | 1.25 | 1.21 | 0.35 |
| 2 | 1.00 | 0.08 | 2.00 | 1.24 | 0.49 |
| 3 | 1.25 | 0.10 | 2.75 | 1.20 | 0.14 |
| 4 | 1.50 | 0.12 | 3.50 | 0.98 | 0.21 |
| 5 | 1.75 | 0.14 | 4.25 | 1.05 | 0.21 |
| 6 | 2.00 | 0.16 | 5.00 | 0.70 | 0.38 |
| 7 | 2.25 | 0.18 | 5.75 | 0.85 | 0.23 |
| 8 | 2.50 | 0.20 | 6.50 | 0.55 | 0.14 |
Table 6 Steepest climb tests and results
试验号 No. | 因素 Factors (g·L-1) | 菌丝干重 Mycelium dry weight (g) | 碱产率 Alkaloid yield (mg·g-1) | ||
|---|---|---|---|---|---|
L-赖氨酸 L-lysine | L-哌啶酸 L-piperidinic acids | 苯丙氨酸 Phenylalanine | |||
| 1 | 0.75 | 0.06 | 1.25 | 1.21 | 0.35 |
| 2 | 1.00 | 0.08 | 2.00 | 1.24 | 0.49 |
| 3 | 1.25 | 0.10 | 2.75 | 1.20 | 0.14 |
| 4 | 1.50 | 0.12 | 3.50 | 0.98 | 0.21 |
| 5 | 1.75 | 0.14 | 4.25 | 1.05 | 0.21 |
| 6 | 2.00 | 0.16 | 5.00 | 0.70 | 0.38 |
| 7 | 2.25 | 0.18 | 5.75 | 0.85 | 0.23 |
| 8 | 2.50 | 0.20 | 6.50 | 0.55 | 0.14 |
序号 No. | L-赖氨酸 L-lysine (g·L-1) | L-哌啶酸 L-piperidinic acids (g·L-1) | 苯丙氨酸 Phenylalanine (g·L-1) | 碱产率 Alkaloid yield (mg·g-1) | 序号 No. | L-赖氨酸 L-lysine (g·L-1) | L-哌啶酸 L-piperidinic acids (g·L-1) | 苯丙氨酸 Phenylalanine (g·L-1) | 碱产率 Alkaloid yield (mg·g-1) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.5 | 0.08 | 3.5 | 0.667 | 10 | 1.5 | 0.04 | 2.0 | 0.767 |
| 2 | 1.0 | 0.08 | 2.0 | 1.232 | 11 | 1.0 | 0.12 | 0.5 | 0.839 |
| 3 | 1.5 | 0.08 | 0.5 | 0.810 | 12 | 1.0 | 0.08 | 2.0 | 1.424 |
| 4 | 0.5 | 0.04 | 2.0 | 0.700 | 13 | 1.5 | 0.08 | 3.5 | 1.054 |
| 5 | 1.0 | 0.08 | 2.0 | 1.414 | 14 | 1.5 | 0.12 | 2.0 | 0.810 |
| 6 | 1.0 | 0.04 | 3.5 | 0.772 | 15 | 1.0 | 0.04 | 0.5 | 0.877 |
| 7 | 1.0 | 0.08 | 2.0 | 1.359 | 16 | 1.0 | 0.08 | 2.0 | 1.396 |
| 8 | 0.5 | 0.12 | 2.0 | 0.751 | 17 | 1.0 | 0.12 | 3.5 | 0.847 |
| 9 | 0.5 | 0.08 | 0.5 | 0.917 |
Table 7 Experimental design scheme for response surface methodology and results
序号 No. | L-赖氨酸 L-lysine (g·L-1) | L-哌啶酸 L-piperidinic acids (g·L-1) | 苯丙氨酸 Phenylalanine (g·L-1) | 碱产率 Alkaloid yield (mg·g-1) | 序号 No. | L-赖氨酸 L-lysine (g·L-1) | L-哌啶酸 L-piperidinic acids (g·L-1) | 苯丙氨酸 Phenylalanine (g·L-1) | 碱产率 Alkaloid yield (mg·g-1) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.5 | 0.08 | 3.5 | 0.667 | 10 | 1.5 | 0.04 | 2.0 | 0.767 |
| 2 | 1.0 | 0.08 | 2.0 | 1.232 | 11 | 1.0 | 0.12 | 0.5 | 0.839 |
| 3 | 1.5 | 0.08 | 0.5 | 0.810 | 12 | 1.0 | 0.08 | 2.0 | 1.424 |
| 4 | 0.5 | 0.04 | 2.0 | 0.700 | 13 | 1.5 | 0.08 | 3.5 | 1.054 |
| 5 | 1.0 | 0.08 | 2.0 | 1.414 | 14 | 1.5 | 0.12 | 2.0 | 0.810 |
| 6 | 1.0 | 0.04 | 3.5 | 0.772 | 15 | 1.0 | 0.04 | 0.5 | 0.877 |
| 7 | 1.0 | 0.08 | 2.0 | 1.359 | 16 | 1.0 | 0.08 | 2.0 | 1.396 |
| 8 | 0.5 | 0.12 | 2.0 | 0.751 | 17 | 1.0 | 0.12 | 3.5 | 0.847 |
| 9 | 0.5 | 0.08 | 0.5 | 0.917 |
方差来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F-value | P值 P-value |
|---|---|---|---|---|---|
| 模型Model | 1.1500 | 9 | 0.1276 | 31.880 | <0.0001 |
| X1 | 0.0206 | 1 | 0.0206 | 5.1400 | 0.0578 |
| X2 | 0.0021 | 1 | 0.0021 | 0.5359 | 0.4879 |
| X3 | 0.0013 | 1 | 0.0013 | 0.3296 | 0.5839 |
| X1X2 | 0.0000 | 1 | 0.0000 | 0.0041 | 0.9510 |
| X1X3 | 0.0611 | 1 | 0.0611 | 15.270 | 0.0058 |
| X2X3 | 0.0032 | 1 | 0.0032 | 0.8005 | 0.4007 |
| X12 | 0.3466 | 1 | 0.3466 | 86.550 | <0.0001 |
| X22 | 0.4195 | 1 | 0.4195 | 104.75 | <0.0001 |
| X32 | 0.1865 | 1 | 0.1865 | 46.570 | 0.0002 |
| 残差Residual | 0.028 | 7 | 0.004 | ||
| 失拟项Lack of fit | 0.0044 | 3 | 0.0015 | 0.2499 | 0.8580 |
| 纯误差Pure error | 0.0236 | 4 | 0.0059 | ||
| 综合Cor total | 1.1800 | 16 |
Table 8 Response surface quadratic model ANOVA
方差来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F-value | P值 P-value |
|---|---|---|---|---|---|
| 模型Model | 1.1500 | 9 | 0.1276 | 31.880 | <0.0001 |
| X1 | 0.0206 | 1 | 0.0206 | 5.1400 | 0.0578 |
| X2 | 0.0021 | 1 | 0.0021 | 0.5359 | 0.4879 |
| X3 | 0.0013 | 1 | 0.0013 | 0.3296 | 0.5839 |
| X1X2 | 0.0000 | 1 | 0.0000 | 0.0041 | 0.9510 |
| X1X3 | 0.0611 | 1 | 0.0611 | 15.270 | 0.0058 |
| X2X3 | 0.0032 | 1 | 0.0032 | 0.8005 | 0.4007 |
| X12 | 0.3466 | 1 | 0.3466 | 86.550 | <0.0001 |
| X22 | 0.4195 | 1 | 0.4195 | 104.75 | <0.0001 |
| X32 | 0.1865 | 1 | 0.1865 | 46.570 | 0.0002 |
| 残差Residual | 0.028 | 7 | 0.004 | ||
| 失拟项Lack of fit | 0.0044 | 3 | 0.0015 | 0.2499 | 0.8580 |
| 纯误差Pure error | 0.0236 | 4 | 0.0059 | ||
| 综合Cor total | 1.1800 | 16 |
| [1] | Ren G, Ding G T, Zhang H Y, et al. Antiviral activity of sophoridine against enterovirus 71 in vitro. Journal of Ethnopharmacology, 2019, 236: 124-128. |
| [2] | Ma T, Yan H, Shi X L, et al. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy. Industrial Crops and Products, 2018, 111: 149-157. |
| [3] | Wang R, Deng X, Gao Q, et al. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. Journal of Ethnopharmacology, 2020, 248: 112172. |
| [4] | Song X H, Pan Y, Li L Y, et al. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields. Public Library of Science One, 2018, 13(3): e0193811. |
| [5] | Zhang G. An endophytic fungus from Gamptotheca acuminate that produce GPT and research of biology of GPT. Guiyang: Guizhou University, 2007. |
| 张根. 产喜树碱内生真菌的分离、鉴定及生物学活性研究. 贵阳: 贵州大学, 2007. | |
| [6] | Gao L, Wang K X, Zhou Y Z, et al. Uncovering the anticancer mechanism of compound kushen injection against HCC by integrating quantitative analysis, network analysis and experimental validation. Scientific Reports, 2018, 8(1): 624. |
| [7] | Cao X, Xu L, Wang J, et al. Endophytic fungus Pseudodidymocyrtis lobariellae KL27 promotes taxol biosynthesis and accumulation in Taxus chinensis. BMC Plant Biology, 2022, 22(1): 1-18. |
| [8] | Toghueo R M K, Sahal D, Zabalgogeazcoa Í, et al. Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitology Research, 2018, 117: 2473-2485. |
| [9] | Kusari S, Hertweck C, Spitellert M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 2012, 19(7): 792-798. |
| [10] | Luo D, Lin Q, Tan J L, et al. Water-soluble matrine-type alkaloids with potential anti-neuroinflammatory activities from the seeds of Sophora alopecuroides. Bioorganic Chemistry, 2021, 116: 105337. |
| [11] | Ju M X, Zhang Q, Wang R, et al. Correlation in endophytic fungi community diversity and bioactive compounds of Sophora alopecuroides. Frontiers in Microbiology, 2022, 13: 955647. |
| [12] | Yu Y T, He S H, Zhao Q M. Isolation and identification of matrine-producing fungal endophytes from Sophora alopecuroides in Ningxia. Scientia Agricultura Sinica, 2013, 46(13): 2643-2654. |
| 余永涛, 何生虎, 赵清梅. 宁夏苦豆子中产苦参碱内生真菌的分离与鉴定. 中国农业科学, 2013, 46(13): 2643-2654. | |
| [13] | Cao K, Chen J, Lu X, et al. Matrine-producing endophytic fungus Galactomyces candidum TRP-7: Screening, identification, and fermentation conditions optimization for matrine production. Biotechnology Letters, 2023, 45(2): 209-223. |
| [14] | Cook D, Gardner D R, Grum D, et al. Swainsonine and endophyte relationships in Astragalus mollissimus and Astragalus lentiginosus. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1281-1287. |
| [15] | Chen Q, Wang J, Gao Y, et al. Optimization of fermentation conditions and product identification of a saponin-producing endophytic fungus. Microorganisms, 2023, 11(9): 2331. |
| [16] | Yang G D. Study on biosynthesis of swainsonine by the locoweed’s endophytic fungi. Yangling: Northwest A & F University, 2012. |
| 杨国栋. 疯草内生真菌合成苦马豆素的研究. 杨凌: 西北农林科技大学, 2012. | |
| [17] | Zhuang J H, Gao Z G, Liu X, et al. Effect of fermentation factors on spore types of Trichoderma strain 23. Chinese Journal of Biological Control, 2005, 21(1): 37-40. |
| 庄敬华, 高增贵, 刘限, 等. 不同发酵条件对木霉产孢类型的影响. 中国生物防治学报, 2005, 21(1): 37-40. | |
| [18] | Li Q N, Yin Y F, Ma Y, et al. Study on the optimum medium and concentration of fly maggot-killing conidia of Metarhizium brunneum. Heilongjiang Animal Science and Veterinary Medicine, 2024(8): 60-67, 76. |
| 李倩楠, 尹衍峰, 马园, 等. 棕色绿僵菌最适培养基和杀蝇蛆分生孢子浓度探究. 黑龙江畜牧兽医, 2024(8): 60-67, 76. | |
| [19] | Jin J. Screening and optimization of alkaloid-producing endophytic fungi of Sophora alopecuroides L. for quinolizidine alkaloids. Yinchuan: Ningxia University, 2022. |
| 金婧. 产喹诺里西啶生物碱苦豆子内生真菌的筛选与产碱条件的优化. 银川: 宁夏大学, 2022. | |
| [20] | Henzelyová J, Antalová M, Nigutová K, et al. Isolation, characterization and targeted metabolic evaluation of endophytic fungi harbored in 14 seed-derived Hypericum species. Planta Medica, 2020, 86(13/14): 997-1008. |
| [21] | Wang W K, Ju M X, Jin J, et al. Screening of alkaloid-producing endophytic fungi from Sophora alopecuroides and optimization of their fermentation conditions. Acta Agrestia Sinica, 2025, 33(1): 307-316. |
| 王文凯, 鞠明岫, 金婧, 等. 产生物碱苦豆子内生真菌筛选及其发酵条件优化. 草地学报, 2025, 33(1): 307-316. | |
| [22] | Ju M X, Zhang Q Q, Wang R T, et al. Community ecological succession of endophytic fungi associates with medicinal compound accumulation in Sophora alopecuroides. Microbiological Spectrum, 2024, 12(2): e03076-23. |
| [23] | Wang Q, Li Y, Li K W, et al. Sophoridine: A review of its pharmacology, pharmacokinetics and toxicity. Phytomedicine, 2022, 95: 153756. |
| [24] | Zhang X G, Guo S J, Wang W N, et al. Diversity and bioactivity of endophytes from Angelica sinensis in China. Frontiers in Microbiology, 2020, 11: 1489. |
| [25] | Berbee M L, Pirseyedi M, Hubbard S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia, 1999, 91(6): 964-977. |
| [26] | Dwibedi V, Rath S K, Jain S, et al. Key insights into secondary metabolites from various Chaetomium species. Applied Microbiology and Biotechnology, 2023, 107(4): 1077-1093. |
| [27] | Anitha K P G U, Mythili S. Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pacific Journal of Tropical Medicine, 2017, 10(6): 588-593. |
| [28] | Zhou W, Cai M, Na K, et al. pH-dependent accumulation of anticancer compound on mycelia in fermentation of marine fungus. Journal of Industrial Microbiology and Biotechnology, 2014, 41(7): 1169-1173. |
| [29] | Hu Z, Weng Q, Cai Z, et al. Optimization of fermentation conditions and medium components for chrysomycin a production by Streptomyces sp. 891-B6. BMC Microbiology, 2024, 24(1): 120. |
| [30] | Zhang Y H, Li H, Zhang M Q, et al. Identification of a cellulose-degrading bacteria from silkworm excrement and optimization of enzyme production and its bioaugmentation effect. Acta Sericologica Sinica, 2023, 49(6): 551-559. |
| 张元昊, 李豪, 张敏琪, 等. 一株蚕沙纤维素降解菌的鉴定及产酶优化和生物强化效果. 蚕业科学, 2023, 49(6): 551-559. | |
| [31] | Wu X L. Studies on feather-degrading Flavobacterium breve ZDM, the fermentation conditions and characteristics of keratinase. Hangzhou: Zhejiang University, 2001. |
| 吴小伦. 羽毛角蛋白降解菌(Flavobacterium breve ZDM)的分离、鉴定及其发酵产酶条件和酶学特性的研究. 杭州: 浙江大学, 2001. | |
| [32] | Tang Q, Liu Y, Peng X, et al. Research progress in the pharmacological activities, toxicities, and pharmacokinetics of sophoridine and its derivatives. Drug Design, Development and Therapy, 2023, 16: 191-212. |
| [33] | Wei Z J, Zhou L C, Chen H, et al. Optimization of the fermentation conditions for 1-deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. International Journal of Food Engineering, 2011, 7(3), 10.2202/1556-3758.2354. |
| [34] | Chen D, Sheng W, Wang D, et al. Effective purification of high concentration chromium-containing wastewater and preparation of chromium ferrite. Environmental Engineering Research, 2023, 28(6): 220706. |
| [35] | Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 2015, 33(6): 873-887. |
| [36] | Pu X, Qu X, Chen F, et al. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 2013, 97: 9365-9375. |
| [37] | Zhao X M, Wang Z Q, Shu S H, et al. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS One, 2013, 8(4): e61777. |
| [38] | Li Y, Wang G, Liu J, et al. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. European Journal of Medicinal Chemistry, 2020, 188: 111972. |
| [39] | Ramírez-Betancourt A, Hernández-Sánchez A M, Salcedo-Morales G, et al. Unraveling the biosynthesis of quinolizidine alkaloids using the genetic and chemical diversity of mexican lupins. Diversity, 2021, 13(8): 375. |
| [40] | Bunsupa S, Yamazaki M, Saito K. Quinolizidine alkaloid biosynthesis: Recent advances and future prospects. Frontiers in Plant Science, 2012, 3: 239. |
| [41] | Zhang L L, Yu Y T, He S H, et al. Influence of different factors on swainsonine production in fungal endophyte from locoweed. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2015, 46(1): 163-173. |
| 张蕾蕾, 余永涛, 何生虎, 等. 不同因素对疯草内生真菌合成苦马豆素的影响. 畜牧兽医学报, 2015, 46(1): 163-173. |
| [1] | LU Guang-xin, WANG Jun-bang, CHEN Xiu-rong, YANG Cheng-de, XUE Li. Study on a laccase-producing fungus from alpine grassland soil in eastern Qilian Mountains: screening, identification, and activity analyses [J]. Acta Prataculturae Sinica, 2014, 23(2): 243-252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||