Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends in Plant Science, 2010, 15(2): 89-97. Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 1997, 21(2): 79-102. Delauney A J, Hu C A, Kishor P B, et al. Cloning of ornithine delta-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. Journal of Biological Chemistry, 1993, 268(25): 18673-18678. Zhang C S, Lu Q, Verma D P S. Removal of feedback inhibition of delta 1-Pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. Journal of Biological Chemistry, 1995, 270(35): 20491-20496. Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids, 2008, 35(4): 753-759. 刘公社, 齐冬梅. 羊草生物学研究进展. 草业学报, 2004, 13(5): 6-11. 孔祥军, 梁正伟. 羊草分子生物学研究进展. 生命科学研究, 2007, 11(4): 289-294. 刘公社, 李晓峰. 羊草种质资源研究. 北京:科学出版社, 2011. Cattivelli L, Rizza F, Badeck F W, et al. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 2008, 105(1-2): 1-14. Su M, Li X F, Ma X Y, et al. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Science, 2011, 181(6): 652-659. Strizhov N, Abraham E, Okresz L, et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. The Plant Journal, 1997, 12(3): 557-569. Szekely G, Abraham E, Cseplo A, et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. The Plant Journal, 2008, 53(1): 11-28. Hur J, Jung K H, Lee C H, et al. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science, 2004, 167(3): 417-426. Fujita T, Maggio A, Garcia-Rios M, et al. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiology, 1998, 118(2): 661-674. Mattioli R, Falasca G, Sabatini S, et al. The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiologia Plantarum, 2009, 137(1): 72-85. 陈吉宝, 赵丽英, 毛新国, 等. 转 PvP5CS1 基因拟南芥植株对干旱和盐胁迫的反应. 作物学报, 2010, 36(1): 147-153. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, et al. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 2005, 169(4): 746-752. Anoop N, Gupta A K. Transgenic indica rice cv IR-50 over-expressiong Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase cDNA shows tolerance to high salt. Journal of Plant Biochemistry and Biotechnology, 2003, 12(2): 109-116. Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 2004, 166(4): 941-948. Vendruscolo E C G, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007, 164(10): 1367-1376. Han K H, Hwang C H. Salt tolerance enhanced by transformation of a P5CS gene in carrot. Journal of Plant Biotechnology, 2003, 5(3): 157-161. |