草业学报 ›› 2014, Vol. 23 ›› Issue (5): 312-320.DOI: 10.11686/cyxb20140537
马晖玲*,房媛媛
收稿日期:
2014-01-09
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
Email:mahl@gsau.edu.cn
作者简介:
马晖玲(1966-),女,回族,甘肃兰州人,教授,博士。E-mail:mahl@gsau.edu.cn
基金资助:
国家自然科学基金(丁二醇诱导匍匐翦股颖抗病性及其ISR机理研究-31360583)资助
MA Hui-ling,FANG Yuan-yuan
Received:
2014-01-09
Online:
2014-10-20
Published:
2014-10-20
摘要:
针对目前匍匐翦股颖草坪病害防治的弊端,引入诱导植物抗病性的概念,从信号传导、基因表达水平、细胞防御结构和生理响应等层面阐述了诱导抗病性后植株体所发生的变化规律;系统揭示了基于SAR和ISR方式的植物抗病性诱导机理。着意综述了诱导植物抗病性理论和研究成果在匍匐翦股颖病害控制中的应用状况,旨在为匍匐翦股颖新型、环保的草坪病害管理实践提供理论指导。
中图分类号:
马晖玲,房媛媛. 植物抗病性及诱导抗性在匍匐翦股颖病害防治中的应用[J]. 草业学报, 2014, 23(5): 312-320.
MA Hui-ling,FANG Yuan-yuan. Induction of plant disease resistance and its application for disease control in creeping bentgrass[J]. Acta Prataculturae Sinica, 2014, 23(5): 312-320.
Reference:[1] Sun J X. Lawn School (Second Edition)[M]. Beijing, China Agriculture Press, 2003: 93, 233-239.[2] Wen K J, Luo T Q, Zhang L, et al. Control efficacy of 6 fungicides against 3 pathogens of turfgrass diseases[J]. Acta Prataculturae Sinica, 2013, 22(3): 124-131.[3] Li R Q, Liu X, Qiu H Z, et al. Rapid detection of Rhizoctonia in rhizosphere soil of potato using real-time quantitative PCR[J]. Acta Prataculturae Sinica, 2013, 22(5): 136-144.[4] Zhang C X, Nan Z B, Li C J, et al. Studies progress of fungicide seed treatments on the control of turfgrass diseases[J]. Acta Prataculturae Sinica, 2005, 14(6): 14-22.[5] Nan Z B. Turfgrass disease integrated control system[A]. see: Chen Z Z. 21st Century China lawn Science and turf industry[M]. Beijing: China Agricultural University Press, 1999: 193-202.[6] Smith J D, Jackson N, Woolhouse A R. Fungal Diseases of Amenity Turf Grasses[M]. London: E. & F.N. Spon, 1989.[7] Gu L J, Xu B L, Liang Q L, et al. Impact and colonisation ability of Trichoderma biocontrol on lawn soil microflora[J]. Acta Prataculturae Sinica, 2013, 22(3): 321-326.[8] Delaney T P. Genetic dissection of acquired resistance to disease[J]. Plant Physiology, 1997, 113: 5-12.[9] Klessig D F, Durner J, Noad R, et al. Nitric oxide and alicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(16): 8849-8855.[10] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585-588.[11] Ding X Y, Zhang J, Su B L, et al. Role of salicylic acid in plant disease resistance[J]. Chinese Bulletin of Botant, 2001, 18(2): 163-168.[12] Liu L H, Lin Q Y, Xie H A, et al. Pathogenesis-related proteins and plant disease resistance[J]. Fujian Journal of Agricultural Sciences, 1999, 14(3): 53-58.[13] Guo J F, Pan J S, Wang C, et al. Research on relationships of pathogenesis-related proteins with plant disease resistance and their application in turfgrass disease-resistance breeding[J]. Acta Prataculturae Sinica, 2008, 17(6): 156-163.[14] Vanderplank J E. Genetic and Molecular Basisof Plant Pathogene[M]. New York: Springer-Verlag, Berlin Heidebeg, 1978: 22.[15] Hammerschmidt R, Nuckles. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium[J]. Physiological Plant Pathology, 1982, 20: 73-82.[16] Wang J. Molecular mechanism of plant disease resistance reactions[A]. see: Yu S W, Compile. Plant Physiology and Molecular Biology (Second Edition)[M]. Beijing: Science Press, 1999: 802.[17] Sticher L, Mauch mani B, Metraux J P. Systemic acquired resistance[J]. Annual Review of Phytopathology, 1997, 35: 235-270.[18] Nicole B, Georges T. Treatment with chitosan enhances resistance of tomato plant to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis lycopersici[J]. Molecular Plant Pathology, 1992, 41: 32-52.[19] Xu W L, Zeng Y. Plant induced disease resistance genetic engineering[J]. Bulletin of Biology, 1996, 31(1): 18-20.[20] Hu J J, Liu Z L, Wen J L. A preliminary study on the resistant mechanism of poplar cell induced by Dothiorella gregaria cell wall oligosaccharide elicitor[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2003, 31(4): 145-148.[21] Fan Z J, Liu X F, Liu F L, et al. Progress of researches on induced resistance of plant activator[J]. Acta Phytophylacica Sinica, 2005, 32(1): 88-89.[22] Tan Y H. Plant induced resistance mechanisms[J]. Journal of Liaoning Higher Vocational Technical, 2000, 2(1): 54-55.[23] Vidhyasekaran P. Fungal Pathogenesis in Plants and Crops[M]. New York: Marcel Dekker, 1997: 380-381. [24] Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance[J]. Plant Science, 2002, 162(4): 491-498.[25] Benhamou N, Belanger R R. Induction of systemic resistance to pythium damping-off in cacumber plants by benzothiadiazole: ultrastructure and cytochemistry of hostresponse[J]. The Plant Journal, 1998, 14: 13-21.[26] Wang S R, Zhu K G. Advances of research on systemic acquired resistance in plant[J]. Chinese Journal of Eco-Agriculture, 2002, 10(2): 32-35.[27] Dass B, Dumas gaudot E, Gianinazzi S. Dopathogenesisrelated proteins play a role in bioprotection on mycorrhizal tomato roots toward parasitica[J]. Physiological and Molecular Plant Pathology, 1998, 52(6): 167-183. [28] Dale Walters, Adrian Newton, Gary Lyon. Induced Resistance for Plant Defence[M]. Oxford: Blackwell Publishing, 2007: 31-81.[29] Goarlach J, Volrath S, Knauf-Beiter G. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, actives gene expression and disease resistance in wheat[J]. Plant Cell, 1996, 8: 629-643.[30] Lawton K, Friedrich L, Hunt M. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway[J]. The Plant Journal, 1996, 10: 71-82.[31] Mauch-Mani B, Metraux J P. Salicy acid and systemic acquired resistance to pathogen attack[J]. Annals of Botany, 1998, 82: 535-540.[32] Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance[J]. Science, 1993, 261: 754-756.[33] Anfoka G, Buchenauer H. Systemic acquired resistance in tomato against Phytophtora infestans by pre inoculation with tobacco necrosis virus[J]. Physiological and Molecular Plant Pathology, 1997, 50: 85-101.[34] Ji R Q, Dong C H, Gao R C. Methyl jasmonate, benzothiadiazol and oxalic acid induce resistance to Sclerotinia sclerotiorum in Brassica napus[J], Chinese Journal of Oil Crop Sciences, 2006, 28(2): 184-188.[35] Liao C Y, Ma G R, Hong W Y. Induction effect of chitosan on suppression of tomato early blight and its physiological mechanism[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2003, 29(3): 280-286.[36] Maldonado A M, Doerner P, Dixon R A, et al. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis[J]. Nature, 2002, 419: 399-403.[37] Fan Z J, Liu X F, Liu F L, et al. The role of salicylic acid in systemic acquired resistance signaling Pathways[J]. Chinese Journal of Pesticides, 2004, 43(6): 257-260.[38] Wendehenne D, Durner J, Chen Z. Benzothiadiazole, an inducer of plant defenses, inhibts catalase and ascorbate peroxidase[J]. Phytochemistry, 1998, 47: 651-657.[39] Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defencea genomics perspective[J]. Molecular Plant Pathology, 2002, 3: 371-390.[40] Bailey J A, Mansfield J W. Phytoalexins[M]. Glasgow: Blackie, 1982.[41] Hammerschmidt R. Induced disease resistance: how do induced plants stop pathogens[J]. Physiological and Molecular Plant Pathology, 1999, 55: 77-84.[42] Van Loon L C. Pathogenesis-related proteins[J]. Plant Molecular Biology, 1985, 4: 111-116.[43] Boller T. Biochemical analysis of chitinases and β 1, 3 glucanases[A]. In: Bowles D J, Gurr S. Practical Methods in Molecular Plant Pathology[M]. Oxford: Oxford University Press, 1992: 23-30.[44] Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. The Plant Cell, 2000, 12: 2339-2350.[45] Despres C, De Long C, Glaze S, et al. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors[J]. The Plant Cell, 2000, 12: 279-290.[46] Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans activating TGA factors to a defense to defense gene promoter in Arabidopsis[J]. The Plant Cell, 2003, 15: 1846-1858.[47] Wang D, Weaver N D, Kesarwani M, et al. Induction of protein secretory pathway is required for systemic acquired resistance[J]. Science, 2005, 308: 1036-1040.[48] Lynch J M, Whipps J M. Substrate flow in the rhizosphere[A]. In: Keiater D L, Cregan P B. The Rhizosphere and Plant Growth[M]. Dordrecht: Kluwer, 1991: 15-24.[49] Schippers B, Bakker A W, Bakker P A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology, 1987, 115: 339-358.[50] Van Loon L C, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology, 1998, 36: 453-483.[51] Nandakumar R, Babu S, Viswanathan R, et al. A new bio formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in ricey[J]. Biocontrol Science and Technology, 2001, 46: 493-510.[52] Suzuki S, He Y, Oyaizu H. Indole 3 acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch[J]. Current Microbiology, 2003, 47: 0138-0143.[53] Hoffland E, Pieterse C M J, Bik L, et al. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins[J]. Physiological and Molecular Plant Pathology, 1995, 46: 309-320.[54] Pieterse C M J, Van Wees S C M, Hoffland E, et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression[J]. The Plant Cell, 1996, 8: 1225-1237.[55] Glazebrook J, Rogers E E, Ausubel F M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening[J]. Genetics, 1996, 143: 973-982.[56] Meyer J M, Azelvandre P, Georges C. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHA0[J]. Biofactors, 1992, 4: 23-27.[57] Cortes Barco A M, Goodwin P H, Hsiang T. A comparison of induced resistance activated by benzothiadiazole, (2R, 3R) butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana[J]. Plant Pathology, 2010, 59: 643-653.[58] Knoester M, Pieterse C M J, Bol J F, et al. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application[J]. Molecular Plant-Microbe Interactions, 1999, 12: 720-727.[59] Pieterse C M J, Van Wees S C M, Van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell, 1998, 10: 1571-1580.[60] Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion in Plant Biology, 1998, 1: 404-411.[61] Van Wees S C M, Luijendijk M, Smoorenburg I, et al. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge[J]. Plant Molecular Biology, 1999, 41: 537-549.[62] Schenk P M, Kazan K, Wilson I, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proceedings of the National Academy of Sciences USA, 2000, 97: 11655-11660.[63] Vernooij B, Friedrich L, Morse A, et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction[J]. The Plant Cell, 1994, 6: 959-956.[64] Takahashi H, Ishihara T, Hase S, et al. Beta cyanolanina synthase as a molecular marker for induced resistance by fungal glycoprotein elicitor and commercial plant activators[J]. Phytopathology, 2006, 96: 908-916.[65] Spencer M, Kim Y, Ryu C, et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway[J]. Physiological and Molecular Plant Pathology, 2003, 63: 27-34.[66] Thomma B P H J, Eggermont K, Penninckx I A M A, et al. Separate jasmonate dependent and salicylate-dependent defense esponse pathways in Arabidopsis are essential for resistance to distinct microbial pathogens[J]. Proceedings of the National Academy of Sciences USA, 1998, 95: 15107-15111. [67] Van Wees S C M, De Swart E A M, Van Pelt J A, et al. Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate dependent defense pathways in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences USA, 2000, 97: 8711-8716.[68] Van Peer R, Niemann G J, Schippers B. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r[J]. Phytopathology, 1992, 81: 728-734.[69] Ton J, Pieterse C M J, Van Loon L C. Identification of a locus in Arabidosis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato[J]. Molecular Plant Microbe Interactions, 1999, 12: 911-918.[70] Ton J, Davison S, Van Wees S C M, et al. The Arabidopsis ISR1 locus controlling rhizobacteria mediated induced systemic resistance is involved in ethylene signaling[J]. Plant Physiology, 2001, 125: 652-661.[71] Devoto A, Ellis C, Magusin A, et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate induced secondary metabolism, defence, and hormone interactions[J]. Plant Molecular Biology, 2005, 58: 497-513.[72] Lee J, Fry J, Tisserat N. Dollar Spot in four Bentgrass Cultivars as Affected by Acibenzolar Smethyl and Organic Fertilizers[M]. In: Plant Health Progress, 2003.[73] Ryu C, Farag M, Hu C, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiology, 2004, 134: 1017-1026.[74] Cortes-Barco A M, Hsiang T, Goodwin P H. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R, 3R)-Butanediol or an isoparaffin mixture[J]. Annals of Applied Biology, Plant Pathology, 2010, 157: 179-189.[75] Hsiang T, Goodwin P H, Cortes Barco A M. Plant defense activators and control of turfgrass diseases[J]. Outlooks on Pest Management, 2011, 22(4): 160-164.[76] Ma X, Ma H L, Yao T, et al. Butanediol induced disease resistant against brown spot in creeping bent grass[J]. Journal of Gansu Agricultural University, 2011, 46(6): 77-80.[77] Hsiang T, Goodwin P H, Alejandra M, et al. Activating Disease Resistance in Turfgrasses Against Fungal Pathogens: Civitas and Harmonizer[R]. Plant and Microbe Adaptations to Cold in a Changing World, New York: Springer, 2013: 331-341. 参考文献:[1] 孙吉雄. 草坪学(第二版)[M]. 北京, 中国农业出版社, 2003: 93, 233-239.[2] 文克俭, 罗天琼, 张莉, 等. 6种杀菌剂对3种禾草病害的防治研究[J]. 草业学报, 2013, 22(3): 124-131.[3] 李瑞琴, 刘星, 邱慧珍, 等. 发生马铃薯立枯病土壤中立枯丝核菌的荧光定量PCR快速检测[J]. 草业学报, 2013, 22(5): 136-144.[4] 张成霞, 南志标, 李春杰, 等. 杀菌剂拌种防治草坪草病害的研究进展[J]. 草业学报, 2005, 14(6): 14-22.[5] 南志标. 草坪草病害综合防治体系[A]. 见: 陈佐忠. 面向21 世纪的中国草坪科学与草坪业[M]. 北京: 中国农业大学出版社, 1999: 193-202.[6] Smith J D, Jackson N, Woolhouse A R. Fungal Diseases of Amenity Turf Grasses[M]. London: E. & F.N. Spon, 1989.[7] 古丽君, 徐秉良, 梁巧兰, 等. 生防木霉对草坪土壤微生物区系的影响及定殖能力研究[J]. 草业学报, 2013, 22(3): 321-326.[8] Delaney T P. Genetic dissection of acquired resistance to disease[J]. Plant Physiology, 1997, 113: 5-12.[9] Klessig D F, Durner J, Noad R, et al. Nitric oxide and alicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(16): 8849-8855.[10] Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585-588.[11] 丁秀英, 张军, 苏宝林, 等. 水杨酸在植物抗病中的作用[J]. 植物学通报, 2001, 18(2): 163-168.[12] 刘利华, 林齐英, 谢华安, 等. 病程相关蛋白与植物抗病性研究[J]. 福建农业学报, 1999, 14(3): 53-58.[13] 郭金芳, 潘俊松, 王琛, 等. 病程相关蛋白与植物抗病性关系的研究及其在草坪草抗病育种中的应用[J]. 草业学报, 2008, 17(6): 156-163.[14] Vanderplank J E. Genetic and Molecular Basisof Plant Pathogene[M]. New York: Springer-Verlag, Berlin Heidebeg, 1978: 22.[15] Hammerschmidt R, Nuckles. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium[J]. Physiological Plant Pathology, 1982, 20: 73-82.[16] 王均. 植物抗病反应的分子机理[A]. 见: 余叔文, 编著. 植物生理与分子生物学(第二版)[M]. 北京: 科学出版社, 1999: 802.[17] Sticher L, Mauch-mani B, Metraux J P. Systemic acquired resistance[J]. Annual Review of Phytopathology, 1997, 35: 235-270.[18] Nicole B, Georges T. Treatment with chitosan enhances resistance of tomato plant to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici[J]. Molecular Plant Pathology, 1992, 41: 32-52.[19] 徐文联, 曾艳. 植物诱导抗病基因工程[J]. 生物学通报, 1996, 31(1): 18-20.[20] 胡景江, 刘志龙, 文建雷. 溃疡病菌低聚糖激发子诱导杨树细胞抗病机制的初步研究[J]. 西北农林科技大学学报(自然科学版), 2003, 31(4): 145-148.[21] 范志金, 刘秀峰, 刘凤丽, 等. 植物抗病激活剂诱导植物抗病性的研究进展[J]. 植物保护学报, 2005, 32(1): 88-89.[22] 潭迎华. 植物诱导抗病性机制[J]. 辽宁高职学报, 2000, 2(1): 54-55.[23] Vidhyasekaran P. Fungal Pathogenesis in Plants and Crops[M]. New York: Marcel Dekker, 1997: 380-381. [24] Mohammadi M, Kazemi H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance[J]. Plant Science, 2002, 162(4): 491-498.[25] Benhamou N, Belanger R R. Induction of systemic resistance to pythium damping-off in cacumber plants by benzothiadiazole: ultrastructure and cytochemistry of hostresponse[J]. The Plant Journal, 1998, 14: 13-21.[26] 王生荣, 朱克恭. 植物系统获得抗病性研究进展[J]. 中国生态农业学报, 2002, 10(2): 32-35.[27] Dass B, Dumas-gaudot E, Gianinazzi S. Dopathogenesisrelated proteins play a role in bioprotection on mycorrhizal tomato roots toward parasitica[J]. Physiological and Molecular Plant Pathology, 1998, 52(6): 167-183. [28] Dale Walters, Adrian Newton, Gary Lyon. Induced Resistance for Plant Defence[M]. Oxford: Blackwell Publishing, 2007: 31-81.[29] Goarlach J, Volrath S, Knauf-Beiter G. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, actives gene expression and disease resistance in wheat[J]. Plant Cell, 1996, 8: 629-643.[30] Lawton K, Friedrich L, Hunt M. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway[J]. The Plant Journal, 1996, 10: 71-82.[31] Mauch-Mani B, Metraux J P. Salicy acid and systemic acquired resistance to pathogen attack[J]. Annals of Botany, 1998, 82: 535-540.[32] Gaffney T, Friedrich L, Vernooij B, et al. Requirement of salicylic acid for the induction of systemic acquired resistance[J]. Science, 1993, 261: 754-756.[33] Anfoka G, Buchenauer H. Systemic acquired resistance in tomato against Phytophtora infestans by pre-inoculation with tobacco necrosis virus[J]. Physiological and Molecular Plant Pathology, 1997, 50: 85-101.[34] Ji R Q, Dong C H, Gao R C. Methyl jasmonate, benzothiadiazol and oxalic acid induce resistance to Sclerotinia sclerotiorum in Brassica napus[J], Chinese Journal of Oil Crop Sciences, 2006, 28(2): 184-188.[35] 廖春燕, 马国瑞, 洪文英. 壳聚糖诱导番茄对早疫病的抗性及其生理机制[J]. 浙江大学学报, 2003, 29(3): 280-286.[36] Maldonado A M, Doerner P, Dixon R A, et al. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis[J]. Nature, 2002, 419: 399-403.[37] 范志金, 刘秀峰, 刘凤丽, 等. 水杨酸在诱导系统获得抗性中的信号传导作用[J]. 农药, 2004, 43(6): 257-260.[38] Wendehenne D, Durner J, Chen Z. Benzothiadiazole, an inducer of plant defenses, inhibts catalase and ascorbate peroxidase[J]. Phytochemistry, 1998, 47: 651-657.[39] Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway and plant defence-a genomics perspective[J]. Molecular Plant Pathology, 2002, 3: 371-390.[40] Bailey J A, Mansfield J W. Phytoalexins[M]. Glasgow: Blackie, 1982.[41] Hammerschmidt R. Induced disease resistance: how do induced plants stop pathogens[J]. Physiological and Molecular Plant Pathology, 1999, 55: 77-84.[42] Van Loon L C. Pathogenesis-related proteins[J]. Plant Molecular Biology, 1985, 4: 111-116.[43] Boller T. Biochemical analysis of chitinases and β-1, 3 glucanases[A]. In: Bowles D J, Gurr S. Practical Methods in Molecular Plant Pathology[M]. Oxford: Oxford University Press, 1992: 23-30.[44] Kinkema M, Fan W, Dong X. Nuclear localization of NPR1 is required for activation of PR gene expression[J]. The Plant Cell, 2000, 12: 2339-2350.[45] Despres C, De Long C, Glaze S, et al. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors[J]. The Plant Cell, 2000, 12: 279-290.[46] Johnson C, Boden E, Arias J. Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense to defense gene promoter in Arabidopsis[J]. The Plant Cell, 2003, 15: 1846-1858.[47] Wang D, Weaver N D, Kesarwani M, et al. Induction of protein secretory pathway is required for systemic acquired resistance[J]. Science, 2005, 308: 1036-1040.[48] Lynch J M, Whipps J M. Substrate flow in the rhizosphere[A]. In: Keiater D L, Cregan P B. The Rhizosphere and Plant Growth[M]. Dordrecht: Kluwer, 1991: 15-24.[49] Schippers B, Bakker A W, Bakker P A H M. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology, 1987, 115: 339-358.[50] Van Loon L C, Bakker P A H M, Pieterse C M J. Systemic resistance induced by rhizosphere bacteria[J]. Annual Review of Phytopathology, 1998, 36: 453-483.[51] Nandakumar R, Babu S, Viswanathan R, et al. A new bio-formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in ricey[J]. Biocontrol Science and Technology, 2001, 46: 493-510.[52] Suzuki S, He Y, Oyaizu H. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch[J]. Current Microbiology, 2003, 47: 0138-0143.[53] Hoffland E, Pieterse C M J, Bik L, et al. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins[J]. Physiological and Molecular Plant Pathology, 1995, 46: 309-320.[54] Pieterse C M J, Van Wees S C M, Hoffland E, et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression[J]. The Plant Cell, 1996, 8: 1225-1237.[55] Glazebrook J, Rogers E E, Ausubel F M. Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening[J]. Genetics, 1996, 143: 973-982.[56] Meyer J M, Azelvandre P, Georges C. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHA0[J]. Biofactors, 1992, 4: 23-27.[57] Cortes-Barco A M, Goodwin P H, Hsiang T. A comparison of induced resistance activated by benzothiadiazole, (2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana[J]. Plant Pathology, 2010, 59: 643-653.[58] Knoester M, Pieterse C M J, Bol J F, et al. Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application[J]. Molecular Plant-Microbe Interactions, 1999, 12: 720-727.[59] Pieterse C M J, Van Wees S C M, Van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis[J]. The Plant Cell, 1998, 10: 1571-1580.[60] Reymond P, Farmer E E. Jasmonate and salicylate as global signals for defense gene expression[J]. Current Opinion in Plant Biology, 1998, 1: 404-411.[61] Van Wees S C M, Luijendijk M, Smoorenburg I, et al. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge[J]. Plant Molecular Biology, 1999, 41: 537-549.[62] Schenk P M, Kazan K, Wilson I, et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proceedings of the National Academy of Sciences USA, 2000, 97: 11655-11660.[63] Vernooij B, Friedrich L, Morse A, et al. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction[J]. The Plant Cell, 1994, 6: 959-956.[64] Takahashi H, Ishihara T, Hase S, et al. Beta-cyanolanina synthase as a molecular marker for induced resistance by fungal glycoprotein elicitor and commercial plant activators[J]. Phytopathology, 2006, 96: 908-916.[65] Spencer M, Kim Y, Ryu C, et al. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway[J]. Physiological and Molecular Plant Pathology, 2003, 63: 27-34.[66] Thomma B P H J, Eggermont K, Penninckx I A M A, et al. Separate jasmonate-dependent and salicylate-dependent defense esponse pathways in Arabidopsis are essential for resistance to distinct microbial pathogens[J]. Proceedings of the National Academy of Sciences USA, 1998, 95: 15107-15111. [67] Van Wees S C M, De Swart E A M, Van Pelt J A, et al. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences USA, 2000, 97: 8711-8716.[68] Van Peer R, Niemann G J, Schippers B. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r[J]. Phytopathology, 1992, 81: 728-734.[69] Ton J, Pieterse C M J, Van Loon L C. Identification of a locus in Arabidosis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato[J]. Molecular Plant-Microbe Interactions, 1999, 12: 911-918.[70] Ton J, Davison S, Van Wees S C M, et al. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling[J]. Plant Physiology, 2001, 125: 652-661.[71] Devoto A, Ellis C, Magusin A, et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions[J]. Plant Molecular Biology, 2005, 58: 497-513.[72] Lee J, Fry J, Tisserat N. Dollar Spot in four Bentgrass Cultivars as Affected by Acibenzolar-S-methyl and Organic Fertilizers[M]. In: Plant Health Progress, 2003.[73] Ryu C, Farag M, Hu C, et al. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiology, 2004, 134: 1017-1026.[74] Cortes-Barco A M, Hsiang T, Goodwin P H. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R, 3R)-Butanediol or an isoparaffin mixture[J]. Annals of Applied Biology, Plant Pathology, 2010, 157: 179-189.[75] Hsiang T, Goodwin P H, Cortes-Barco A M. Plant defense activators and control of turfgrass diseases[J]. Outlooks on Pest Management, 2011, 22(4): 160-164.[76] 马祥, 马晖玲, 姚拓, 等. 新型诱导剂丁二醇对匍匐翦股颖抗病性诱导的研究[J]. 甘肃农业大学学报, 2011, 46(6): 77-80.[77] Hsiang T, Goodwin P H, Alejandra M, et al. Activating Disease Resistance in Turfgrasses Against Fungal Pathogens: Civitas and Harmonizer[R]. Plant and Microbe Adaptations to Cold in a Changing World, New York: Springer, 2013: 331-341. |
[1] | 聂红霞,高峰,段廷玉,李彦忠. 红豆草病害研究进展[J]. 草业学报, 2014, 23(3): 302-312. |
[2] | 朱猛蒙,刘艳,张蓉,黄文广. 苜蓿草地害虫-天敌典型相关及生态位分析[J]. 草业学报, 2013, 22(6): 159-166. |
[3] | 相红燕,刘爱萍,高书晶,徐林波,刘长仲. 草地螟优势寄生性天敌——伞裙追寄蝇生物学特性研究[J]. 草业学报, 2013, 22(3): 92-. |
[4] | 文克俭,罗天琼,张莉,陈燕萍,周玉锋,龙忠富,吴佳海,苏生 . 6种杀菌剂对3种禾草病害的防治研究[J]. 草业学报, 2013, 22(3): 124-. |
[5] | 刘金平,游明鸿. 丝茅草侵入量与高羊茅相对竞争力及对幼坪性状影响的分析[J]. 草业学报, 2012, 21(6): 315-320. |
[6] | 古丽君,徐秉良,李彬,梁巧兰. 草坪禾草根腐病病原菌生物学特性研究[J]. 草业学报, 2012, 21(3): 93-98. |
[7] | 吕宗友,苏衍菁,赵国琦,邬彩霞. 不同防褐化措施对苏丹草愈伤诱导以及抗褐化的效果研究[J]. 草业学报, 2011, 20(3): 174-181. |
[8] | 李彦忠,南志标,张志新,刘永儒,高兴业,郑健勋. 沙打旺黄矮根腐病在我国北方5省区的分布与危害[J]. 草业学报, 2011, 20(2): 39-45. |
[9] | 古丽君,徐秉良,梁巧兰,李荣峰. 生防木霉菌T2菌株对禾草腐霉病抑菌作用及机制研究[J]. 草业学报, 2011, 20(2): 46-51. |
[10] | 周洪旭,李长友,李国勋. 草坪害虫华北大黑鳃金龟幼虫围食膜蛋白Ho-Peritrophin3基因克隆及序列分析[J]. 草业学报, 2010, 19(6): 147-153. |
[11] | 古丽君,徐秉良,梁巧兰,薛应钰. 兰州市草坪禾草根腐病的发生及病原菌鉴定[J]. 草业学报, 2009, 18(4): 175-180. |
[12] | 徐娇,许文超,康占海,郑辉,张金林. 瓜果腐霉毒素对多年生黑麦草的致病作用机理初步研究[J]. 草业学报, 2009, 18(4): 181-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||