草业学报 ›› 2015, Vol. 24 ›› Issue (6): 188-203.DOI: 10.11686/cyxb2014316
杨高文1, 2, 刘楠1, 杨鑫1, 张英俊1*, *
收稿日期:
2014-07-21
出版日期:
2015-06-20
发布日期:
2015-06-20
通讯作者:
国家自然科学基金(31472137),973项目(2014CB138805)和牧草产业技术体系项目(CARS-35)资助
作者简介:
杨高文(1986-),男,四川罗江人,讲师,博士。E-mail: yanggw@njau.edu.cn
YANG Gao-Wen1, 2, LIU Nan1, YANG Xin1, ZHANG Ying-Jun1, *
Received:
2014-07-21
Online:
2015-06-20
Published:
2015-06-20
摘要: 丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)是陆地生态系统的重要组成部分,能够与大约80%的陆地植物种类形成AMF-植物共生体。AMF能够影响个体植物的养分吸收,调节物种间的相互作用和植被更新,进而对群落生产力和物种多样性产生重要影响。为了把握AMF与个体植物、植物种间作用以及植物群落关系的研究现状,阐明AMF对群落生产力和物种多样性的作用机制,本研究拟从以下几个方面进行论述。首先,分析了物种水平上AMF与植物间的共生关系及其影响因素,提出预测AMF在不同土壤磷水平下对植物生长影响的概念模型。其次,总结了AMF对植物种间相互作用关系以及幼苗定植的影响。最后,分析了AMF对群落生产力和物种多样性的作用机制,提出相应的预测模型。对于实际生产,本文的研究结果能够应用到牧草生产和草地管理中,为利用人工草地土壤中AMF的养分吸收功能和天然草地的多样性保育及稳定性维持提供了科学根据。对于学术研究,本文综合了国内外最新研究进展,分析了当前研究中存在的科学问题,并对今后的研究方向进行了展望。
杨高文, 刘楠, 杨鑫, 张英俊. 丛枝菌根真菌与个体植物的关系及其对群落生产力和物种多样性的影响[J]. 草业学报, 2015, 24(6): 188-203.
YANG Gao-Wen, LIU Nan, YANG Xin, ZHANG Ying-Jun. Relationship between arbuscular mycorrhizal fungi and individual plant and their effects on plant productivity and species diversity of plant community[J]. Acta Prataculturae Sinica, 2015, 24(6): 188-203.
[1] Smith S E, Read D J. Mycorrhizal Symbiosis (3rd edition)[M]. New York: Elsevier, 2008. [2] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. [3] Stevens C J, Dise N B, Mountford J O, et al . Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303: 1876-1879. [4] Suding K N, Collins S L, Gough L, et al . Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4387-4392. [5] Bai Y F, Wu J G, Clark C M, et al . Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. [6] Yang H, Jiang L, Li L, et al . Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619-626. [7] He D, Li X L, Wan L Q, et al . Influence of urea application on aboveground biomass and important value of the species in the degraded grassland. Acta Prataculturae Sinica, 2009, 18(3): 154-158. [8] Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320(1-2): 37-77. [9] van der Heijden M G A, Klironomos J N, Ursic M, et al . Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72. [10] Vogelsang K M, Reynolds H L, Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172(3): 554-562. [11] Wagg C, Jansa J, Schmid B, et al . Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14(10): 1001-1009. [12] Johnson N C, Angelard C, Sanders I R, et al . Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 2013, 16(Suppl 1): 140-153. [13] Lin S S, Sun X W, Wang X J, et al . Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325. [14] Hetrick B A D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380. [15] Wilson G W T, Hartnett D C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany, 1998, 85(12): 1732-1738. [16] Hartnett D C, Wilson G W T. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology, 1999, 80(4): 1187-1195. [17] Bai Y F, Han X G, Wu J G, et al . Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184. [18] Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441: 629-632. [19] Kiers E T, Duhamel M, Beesetty Y, et al . Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882. [20] van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(6): 296-310. [21] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991, 136(1): 41-48. [22] Zhang F S, Shen J B, Feng G. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2009. [23] Cavagnaro T R, Dickson S, Smith F A. Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil, 2010, 329(1-2): 307-313. [24] Zhu Y G, Smith F A, Smith S E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley ( Hordeum vulgare ) cultivars grown in sand culture. Australian Journal of Agricultural Research, 2002, 53(2): 211-216. [25] Marschner H, Dell B. Nutrient uptake in mycorrhizai symbiosis. Plant and Soil, 1994, 159(1): 89-102. [26] Yao Q, Li X L, Feng G, et al . Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil, 2001, 230(2): 279-285. [27] Li X L, George E, Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 1991, 119(3): 397-404. [28] Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions. In: Lichtfouse E, Hamelin M, Navarrete M, et al . Sustainable Agriculture Volume 2[M]. Netherlands: Springer, 2011: 907-930. [29] Egerton-Warburton L M, Querejeta J I, Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 2007, 58(6): 1473-1483. [30] Birhane E, Sterck F, Fetene M, et al . Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169(4): 895-904. [31] Querejeta J, Egerton-Warburton L, Prieto I, et al . Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant and Soil, 2012, 355(1): 63-73. [32] Porcel R, Aroca R, Ruiz-Lozano J. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012, 32(1): 181-200. [33] Giri B, Mukerji K. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 2004, 14(5): 307-312. [34] Diouf D, Duponnois R, Ba A T, et al . Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Functional Plant Biology, 2005, 32(12): 1143-1152. [35] Estrada B, Barea J, Aroca R, et al . A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366(1-2): 333-349. [36] Rabie G H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia, 1998, 141(3): 159-166. [37] Babikova Z, Johnson D, Bruce T, et al . Underground allies: how and why do mycelial networks help plants defend themselves. Bioessays, 2014, 36(1): 21-26. [38] Jung S, Martinez-Medina A, Lopez-Raez J, et al . Mycorrhiza-Induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 651-664. [39] Vos C, Claerhout S, Mkandawire R, et al . Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 2012, 354(1): 335-345. [40] Li Y J, Liu Z L, Hou H Y, et al . Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum, 2013, 35(12): 3465-3475. [41] Babikova Z, Gilbert L, Bruce T J A, et al . Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 2013, 16(7): 835-843. [42] Duhamel M, Pel R, Ooms A, et al . Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae. Ecology, 2013, 94(9): 2019-2029. [43] Elsharkawy M, Shimizu M, Takahashi H, et al . The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant and Soil, 2012, 361(1-2): 397-409. [44] Jeffries P, Gianinazzi S, Perotto S, et al . The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37(1): 1-16. [45] Wu Q S, Yuan F Y, Fei Y J, et al . Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover. Acta Prataculturae Sinica, 2014, 23(4): 269-275. [46] Bever J D, Schultz P A, Pringle A, et al . Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience, 2001, 51(11): 923-931. [47] Chaudhary V B, Bowker M A, O’Dell T E, et al . Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications, 2009, 19(1): 110-122. [48] Wilson G W T, Rice C W, Rillig M C, et al . Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. [49] van der Heijden M G A. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology, 2010, 91(4): 1163-1171. [50] Hetrick B A D, Wilson G W T, Cox T S. Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Canadian Journal of Botany, 1992, 70(10): 2032-2040. [51] Plenchette C, Fortin J A, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil, 1983, 70(2): 211-217. [52] Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 2003, 49(5): 655-668. [53] Grman E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology, 2012, 93(4): 711-718. [54] Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 1990, 115(1): 77-83. [55] Reinhart K O, Wilson G W T, Rinella M J. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecology Letters, 2012, 15(7): 689-695. [56] Hoeksema J D, Chaudhary V B, Gehring C A, et al . A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. [57] Perez M, Urcelay C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza, 2009, 19(8): 517-523. [58] Koide R. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia, 1991, 85(3): 389-395. [59] Allsopp N, Stock W D. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia, 1992, 91(2): 281-287. [60] Zhen L N, Yang G W, Yang H J, et al . Arbuscular mycorrhizal fungi affect seedling recruitment: a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant and Soil, 2014, 375(1-2): 127-136. [61] van der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150. [62] van der Heijden M G A. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 2004, 7(4): 293-303. [63] van der Heijden M G A, Boller T, Wiemken A, et al . Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 1998, 79(6): 2082-2091. [64] Pankova H, Munzbergova Z, Rydlova J, et al . The response of Aster Amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. American Journal of Botany, 2011, 98(5): 850-858. [65] Johnson N C, Wilson G W T, Bowker M A, et al . Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093-2098. [66] Borowicz V A. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: a search for pattern. Acta Oecologica, 2013, 52: 1-9. [67] Bennett A E, Bever J D. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology, 2007, 88(1): 210-218. [68] Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054. [69] Grime J P, Mackey J M L, Hillier S H, et al . Floristic diversity in a model system using experimental microcosms. Nature, 1987, 328: 420-422. [70] Pietikainen A, Kytoviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants. Journal of Ecology, 2007, 95(4): 639-647. [71] Johnson N C, Rowland D L, Corkidi L, et al . Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 2003, 84(7): 1895-1908. [72] Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185(3): 631-647. [73] Bonneau L, Huguet S, Wipf D, et al . Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula . New Phytologist, 2013, 199(1): 188-202. [74] Siqueira J O, Saggin-Junior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 2001, 11(5): 245-255. [75] Schroeder M S, Janos D P. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil, 2004, 264(1-2): 335-348. [76] Janos D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza, 2007, 17(2): 75-91. [77] Ryan M H, Small D R, Ash J E. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture, 2000, 40(5): 663-670. [78] Corkidi L, Rowland D L, Johnson N C, et al . Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240(2): 299-310. [79] Grman E, Robinson T M P. Resource availability and imbalance affect plant-mycorrhizal interactions: A field test of three hypotheses. Ecology, 2013, 94(1): 62-71. [80] Johnson N C, Graham J H, Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 1997, 135(4): 575-585. [81] Jacquemyn H, Brys R, Merckx V S F T, et al . Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 2014, 202(2): 616-627. [82] Osanai Y, Bougoure D, Hayden H, et al . Co-occurring grass species differ in their associated microbial community composition in a temperate native grassland. Plant and Soil, 2013, 368(1-2): 419-431. [83] Montesinos-Navarro A, Segarra-Moragues J G, Valiente-Banuet A, et al . Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 2012, 196(3): 835-844. [84] Wagg C, Jansa J, Stadler M, et al . Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313. [85] Danieli-Silva A, Uhlmann A, Vicente-Silva J, et al . How mycorrhizal associations and plant density influence intra- and inter-specific competition in two tropical tree species: Cabralea canjerana (Vell.) Mart. and Lafoensia pacari A.St.-Hil. Plant and Soil, 2010, 330(1-2): 185-193. [86] Francis R, Read D J. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 1984, 307: 53-56. [87] Walder F, Niemann H, Natarajan M, et al . Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. [88] Schroeder-Moreno M S, Janos D P. Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany, 2008, 86(10): 1180-1193. [89] Genney D R, Hartley S E, Alexander I J. Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytologist, 2001, 152(2): 355-363. [90] Fitter A H. Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia, 1991, 47(4): 350-355. [91] Xu L M. Mediation of Arbuscular Mycorrhizal Fungi on Plant Density Effects under Different Water Levels:Phenomena and Mechanism[D]. Hangzhou: Zhejiang University, 2010. [92] Zhang Q. Plant-Plant Interaction and Arbuscular Mycorrhizal Fungi[D]. Hangzhou: Zhejiang University, 2011. [93] Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615. [94] Hetrick B A D, Hartnett D C, Wilson G W T, et al . Effects of mycorrhizae, phosphorus availability, and plant-density on yield relationships among competing tallgrass prairie grasses. Canadian Journal of Botany, 1994, 72(2): 168-176. [95] Zobel M, Moora M. Interspecific competition and arbuscular mycorrhiza: Importance for the coexistence of two calcareous grassland species. Folia Geobotanica, 1995, 30(2): 223-230. [96] Moora M, Zobel M. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 1996, 108(1): 79-84. [97] Klabi R, Hamel C, Schellenberg M P, et al . Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biology and Biochemistry, 2014, 70: 176-182. [98] West H M. Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata . Journal of Ecology, 1996, 84(3): 429-438. [99] Bever J D, Morton J B, Antonovics J, et al . Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 1996, 84(1): 71-82. [100] Hart M M, Reader R J, Klironomos J N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution, 2003, 18(8): 418-423. [101] Vandenkoornhuyse P, Ridgway K P, Watson I J, et al . Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 2003, 12(11): 3085-3095. [102] Robinson D, Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany, 1999, 50: 9-13. [103] Tilman D. Species richness of experimental productivity gradients—how important is colonization limitation. Ecology, 1993, 74(8): 2179-2191. [104] MacArthur R H, Wilson E O. The Theory of Island Biogeography[M]. Princeton: Princeton University Press, 1967. [105] Turnbull L A, Crawley M J, Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos, 2000, 88(2): 225-238. [106] Voets L, de la Providencia I, Fernandez K, et al . Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, 2009, 19(5): 347-356. [107] Simard S W, Beiler K J, Bingham M A, et al . Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 2012, 26(1): 39-60. [108] Nakano-Hylander A, Olsson P. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology and Biochemistry, 2007, 39(7): 1450-1458. [109] Janouskova M, Rydlova J, Puschel D, et al . Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza, 2011, 21(7): 641-650. [110] Francis R, Read D J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 1995, 73(S1): 1301-1309. [111] Moora M, Zobel M. Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages. Canadian Journal of Botany, 1998, 76(4): 613-619. [112] Kytoviita M M, Vestberg M, Tuom J. A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology, 2003, 84(4): 898-906. [113] Yang G W. Mechanisms of Mycorrhizal Fungi and Soil Nitrogen and Phosphorus Affecting Community Productivity Changes in the Stipa Steppe[D]. Beijing: China Agricultural University, 2014. [114] Streitwolf-Engel R, van der Heijden M G A, Wiemken A, et al . The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology, 2001, 82(10): 2846-2859. [115] Sudova R, Vosatka M. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant and Soil, 2008, 308(1): 55-67. [116] Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6(5): 388-391. [117] Hiiesalu I, Pärtel M, Davison J, et al . Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. [118] O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154(1): 209-218. [119] van der Heijden M G A, Streitwolf-Engel R, Riedl R, et al . The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172(4): 739-752. [120] Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861. [121] Klironomos J N, McCune J, Hart M, et al . The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 2000, 3(2): 137-141. [122] Collins C D, Foster B L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology, 2009, 90(9): 2567-2576. [123] van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626-2635. [124] Yang G W, Liu N, Lu W J, et al . The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 2014, 102(4): 1072-1082. [125] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO 2 in field studies. New Phytologist, 2004, 164(2): 347-355. [126] Liu Y, Shi G, Mao L, et al . Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535. [127] Reich P B, Knops J, Tilman D, et al . Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. Nature, 2001, 410: 809-812. [128] Reeves F B, Wagner D, Moorman T, et al . Role of endomycorrhizae in revegetation practices in the semi-arid west.1. comparison of incidence of mycorrhizae in severely disturbed vs natural environments. American Journal of Botany, 1979, 66(1): 6-13. [129] Allen M F, Clouse S D, Weinbaum B S, et al . Mycorrhizae and the integration of scales: from molecules to ecosystems. In: Allen M F. Mycorrhizal Functioning[M]. London: Chapman & Hall, 1992: 488-515. [130] Newsham K K, Watkinson A R, West H M, et al . Symbiotic fungi determine plant community structure—changes in a Lichen-Rich community induced by fungicide application. Functional Ecology, 1995, 9(3): 442-447. [131] Allsopp N, Stock W D. Mycorrhizal status of plants growing in the cape floristic region, South-Africa. Bothalia, 1993, 23(1): 91-104. [132] Shi W Q. The effects of arbuscular mycorrhizal fungi on Stipa grandis community in Inner Mongolia grassland. Ecology and Environmental Sciences, 2010, 19(2): 344-349. [133] Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO 2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540. [134] van der Heijden M G A, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 2003, 157(3): 569-578. [135] Zobel M, Moora M, Haukioja E. Plant coexistence in the interactive environment: Arbuscular mycorrhiza should not be out of mind. Oikos, 1997, 78(1): 202-208. [136] Zaller J G, Heigl F, Grabmaier A, et al . Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. Plos One, 2011, 6(12): e29293. [137] Fellbaum C R, Gachomo E W, Beesetty Y, et al . Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2666-2671. [7] 何丹, 李向林, 万里强, 等. 施用尿素当年对退化天然草地物种地上生物量和重要值的影响. 草业学报, 2009, 18(3): 154-158. [13] 林双双, 孙向伟, 王晓娟, 等. 我国菌根学研究进展及其应用展望. 草业学报, 2013, 22(5): 310-325. [22] 张福锁, 申建波, 冯固. 根际生态学—过程与调控[M]. 北京: 中国农业大学, 2009. [45] 吴强盛, 袁芳英, 费永俊, 等. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响. 草业学报, 2014, 23(4): 269-275. [91] 徐黎明. 不同水分状况下丛枝菌根真菌对植物密度效应的调节及机理[D]. 杭州: 浙江大学, 2010. [92] 张倩. 植物相互作用与丛枝菌根真菌[D]. 杭州: 浙江大学, 2011. [113] 杨高文. 菌根真菌和氮磷对针茅草原群落生产力变化的作用机制[D]. 北京: 中国农业大学, 2014. [132] 石伟琦. 丛枝菌根真菌对内蒙古草原大针茅群落的影响. 生态环境学报, 2010, 19(2): 344-349. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||