[1] McNaughton S J. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. American Naturalist, 1979, 113(5): 691-703. [2] Dyer M I, Turner C L, Seastedt T R. Herbivory and its consequences. Ecological Applications, 1993, 3(3): 10-16. [3] Frank D A, Groffman P M. Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology, 1998, 79(7): 2229-2241. [4] Bezemer T M, van Dam N M. Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution, 2005, 20(11): 617-624. [5] Hamilton III E W, Frank D A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 2001, 82(9): 2397-2402. [6] Yang Y F, Wu L W, Lin Q Y, et al . Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648. [7] Qu T B, Zhang J F, Du W C, et al . Research progress on effects of grazing on diversity of microorganisms in grassland soil. Contemporary Eco-Agriculture, 2012, (3): 14-20. [8] Bardgett R D, Wardle D A, Yeates G W. Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry, 1998, 30(14): 1867-1878. [9] Wardle D A, Nicholson K S. Synergistic effects of grassland plant species on soil microbial biomass and activity: implications for ecosytem-level effects of enriched plant diversity. Functional Ecology, 1996, 10: 410-416. [10] Kohler F, Hamelin J, Gillet F, et al . Soil microbial community changes in wooded mountain pastures due to simulated effects of cattle grazing. Plant and Soil, 2005, 278(1-2): 327-340. [11] Maharning A R, Mills A A, Adl S M. Soil community changes during secondary succession to naturalized grasslands. Applied Soil Ecology, 2009, 41(2): 137-147. [12] Holt J. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149. [13] Northup B K, Brown J R, Holt J A. Grazing impacts on the spatial distribution of soil microbial biomass around tussock grasses in a tropical grassland. Applied Soil Ecology, 1999, 13(3): 259-270. [14] Wang K H, McSorley R, Bohlen P, et al . Cattle grazing increases microbial biomass and alters soil nematode communities in subtropical pastures. Soil Biology and Biochemistry, 2006, 38(7): 1956-1965. [15] Regan K M, Nunan N, Boeddinghaus R S, et al . Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biology and Biochemistry, 2014, 71: 21-30. [16] Bardgett R D, Leemans D K, Cook R, et al . Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biology and Biochemistry, 1997, 29(8): 1285-1294. [17] Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309(5739): 1387-1390. [18] Daniel R. The metagenomics of soil. Nature Reviews Microbiology, 2005, 3(6): 470-478. [19] Zhao J. Effect of stocking reats on soil microbial number and biomass in steppe. Acta Agrestia Sinica, 1999, 7(3): 223-227. [20] Zhang C X, Nan Z B. Changeable characteristics of three soil microbial groups under different grazing intensities in Loess Plateau. Pratacultural Science, 2011, 27(11): 131-136. [21] Wang C T, Long R J, Wang G X, et al . Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows. Acta Prataculturae Sinica, 2010, 19(6): 25-34. [22] Liu S G, Ge S R, Long Z F. Studies on soil microorganism numbers andmicrobiota of degenerated rangelands in northwest region of Sichuan P R.China. Acta Prataculturae Sinica, 1994, 3(4): 70-76. [23] Li C L, Zhao M L, Han G D, et al . The effect of grazing on soil micro-organism and soil nutrients and their seasonal dynamics in Stipa breviflora Steppe. Journal of Arid Land Resources and Environment, 2009, 23(4): 184-190. [24] Shan G L, Chen G, Ning F, et al . Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process. Acta Agrestia Sinica, 2012, 20(2): 292-297. [25] Gu A X, Fan Y M, Wu H Q, et al . Relationship between the number of three main microorganisms and the soil environment of degraded grassland on the north slope of the Tianshan Mountains. Acta Prataculturae Sinica, 2010, 19(2): 116-123. [26] Wang X Z, Sheng L X. Effect of grazing intensity on microorganisms quantity and microbial biomass of soil in grassland under protection forest of songnen plain. Journal of Animal and Veterinary Advances, 2012, 11(24): 4549-4552. [27] Smith J L, Paul E A. The significance of soil microbial biomass estimations. Soil Biochemistry, 1990, 6: 357-396. [28] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170(1): 75-86. [29] Chen G C. Soil microbial quantity determination method and its application in red soil. Chinese Journal of Soil Science, 1999, 30(6): 197-200. [30] Gao Y C, Zhou W S, Chen W X, et al . Estimation for biomass and turnover of soil microorganisms. Chinese Journal of Ecology, 1993, 12(6): 6-10. [31] Risser P G, Birney E C, Blocker H D, et al . The True Prairie Ecosystem[M]. Pennsylvania: Hutchinson Ross Publishing Company Stroudsburg, 1981. [32] Ross D J, Tate K R. Microbial biomass in soil: effects of some experimental variables on biochemical estimations. Soil Biology and Biochemistry, 1984, 16(2): 161-167. [33] Sarathchandra S U, Perrott K W, Upsdell M P. Microbiological and biochemical characteristics of a range of New Zealand soils under established pasture. Soil Biology and Biochemistry, 1984, 16(2): 177-183. [34] Martin J P, Chapman H D. Volatilization of ammonia from surface-fertilized soils. Soil Science, 1951, 71(1): 25-34. [35] Stillwell M A, Woodmansee R G. Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil. Soil Science Society of America Journal, 1981, 45(5): 893-898. [36] Ruess R W, McNaughton S J. Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grasslands. Oikos, 1987, 49(1): 101-110. [37] Singh R S, Srivastava S C, Raghubanshi A S, et al . Microbial C, N and P in dry tropical savanna: effects of burning and grazing. Journal of Applied Ecology, 1991, 28(3): 869-878. [38] Bardgett R D, Hobbs P J, Frostegård Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22(3): 261-264. [39] Qi S, Zheng H, Lin Q, et al . Effects of livestock grazing intensity on soil biota in a semiarid steppe of Inner Mongolia. Plant and Soil, 2011, 340: 117-126. [40] Gao Y Z, Giese M, Lin S, et al . Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 2008, 307(1-2): 41-50. [41] Hoffmann C, Funk R, Wieland R, et al . Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. Journal of Arid Environments, 2008, 72(5): 792-807. [42] Schneider K, Huisman J, Breuer L, et al . Ambiguous effects of grazing intensity on surface soil moisture: A geostatistical case study from a steppe environment in Inner Mongolia, PR China. Journal of Arid Environments, 2008, 72(7): 1305-1319. [43] Zhao S. Effects of Grazing and Fenced on Soil Microbial Diversity in Stipa Steppes of Hulunbeier, Inner Mongolia[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. [44] Li Y J, Li G, Song X L, et al . The influence of rest-grazing on the soil microbial community functional diversity of Stipa baicalensis Steppe. Acta Prataculturae Sinica, 2013, 22(6): 21-30. [45] Casamayor E O, Schäfer H, Bañeras L, et al . Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2000, 66(2): 499-508. [46] Zhang Y W, Han J G, Han Y W, et al . The content of soil micro-biomass carbon and nitrogen of different grazing Intensities on Pasture. Acta Agrestia Sinica, 2003, 11(4): 343-346. [47] Li Q, Mayzlish E, Shamir I, et al . Impact of grazing on soil biota in a Mediterranean grassland. Land Degradation & Development, 2005, 16(6): 581-592. [48] Schwartz M W, Brigham C A, Hoeksema J D, et al . Linking biodiversity to ecosystem function: implications for conservation ecology. Oecologia, 2000, 122(3): 297-305. [49] Hughes A. Disturbance and diversity: an ecological chicken and egg problem. Nature Education Knowledge, 2012, 3(10): 48. [50] Nannipieri P, Ascher J, Ceccherini M, et al . Microbial diversity and soil functions. European Journal of Soil Science, 2003, 54(4): 655-670. [51] Insam H. Developments in soil microbiology since the mid 1960s. Geoderma, 2001, 100(3): 389-402. [52] Johnsen K, Jacobsen C S, Torsvik V, et al . Pesticide effects on bacterial diversity in agricultural soils-a review. Biology and Fertility of Soils, 2001, 33(6): 443-453. [53] Sugden A M. Diversity & ecosystem resilience. Science, 2000, 290(5490): 233-235. [54] Li Z Z, Zhu L B, Lin Y C, et al . Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbuir grassland. Acta Ecologica Sinica, 2010, 30(11): 2883-2889. [55] Zhang H F, Li G, Song X L, et al . Functional diversity of soil microbial communities in Stipa baicalensis steppe in Inner Mongolia as affected by different land use patterns. Chinese Journal of Ecology, 2012, 31(5): 1143-1149. [56] Zhou W P, Xiang D, Hu W J, et al . Influences of long-term enclosure on the restoration of plant and AM fungal communities on grassland under different grazing intensities. Acta Ecologica Sinica, 2013, 33(11):3383-3393. [57] Zhou Y K, Zhang J N, Yang D L, et al . Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems of Leymus chinensis steppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33. [58] Patra A K, Abbadie L, Clays-Josserand A, et al . Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs, 2005, 75(1): 65-80. [59] McCaig A E, Glover L A, Prosser J I. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology, 1999, 65(4): 1721-1730. [60] Grayston S J, Griffith G S, Mawdsley J L, et al . Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology and Biochemistry, 2001, 33(4): 533-551. [61] Wakelin S A, Gregg A L, Simpson R J, et al . Pasture management clearly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, 2009, 52(4): 237-251. [62] Zhou X, Wang J, Hao Y, et al . Intermediate grazing intensities by sheep increase soil bacterial diversities in an Inner Mongolian steppe. Biology and Fertility of Soils, 2010, 46(8): 817-824. [63] Howe H F, Brown J S, Zorn-Arnold B. A rodent plague on prairie diversity. Ecology Letters, 2002, 5(1): 30-36. [64] Liu T Z, Nan Z B. Advances in nitrification and nitrifying bacteria in grassland soil. Pratacultural Science, 2011, 28(6): 951-958. [65] Lienhard P, Terrat S, Chemidlin N. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical graddland. Agronomy for Sustainable Development, 2013, 34: 525-533. [66] Nacke H, Thürmer A, Wollherr A, et al . Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PloS One, 2011, 6(2): e17000. [67] Ford H, Rousk J, Garbutt A, et al . Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands. Biology and Fertility of Soils, 2013, 49(1): 89-98. [68] Schönborn W. Population dynamics and production biology of testate amoebae (Rhizopoda, Testacea) in raw humus of two coniferous forest soils. Archiv für Protistenkunde, 1986, 132(4): 325-342. [69] Gao Y, Zhu W, Chen W. Structure of the protozoan community in soil and its ecological functions. Chinese Journal of Ecology, 2000, 19(1): 59. [70] Visser S, Parkinson D. Soil biological criteria as indicators of soil quality: soil microorganisms. American Journal of Alternative Agriculture, 1992, 7(1-2): 33-37. [71] Øvreås L. Population and community level approaches for analysing microbial diversity in natural environments. Ecology Letters, 2000, 3(3): 236-251. [72] Clegg C D. Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Applied Soil Ecology, 2006, 31(1): 73-82. [73] Bardgett R D, Jones A C, Jones D L, et al . Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biology and Biochemistry, 2001, 33(12): 1653-1664. [74] Frostegård Å, Tunlid A, Bååth E. use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 2011, 43: 1621-1625. [75] Schoug Å, Fischer J, Heipieper H J, et al . Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. Journal of Industrial Microbiology & Biotechnology, 2008, 35(3): 175-181. [76] Nichols P, Stulp B K, Jones J G, et al . Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Archives of Microbiology, 1986, 146(1): 1-6. [77] Olsson P A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 1999, 29(4): 303-310. [78] Lin X G. Soil Microbial Research Principles and Methods[M]. Beijing: High Education Press, 2010. [79] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700. [80] Bloem J, Breure A M. Microbial indicators. Trace Metals and other Contaminants in the Environment, 2003, 6: 259-282. [81] Ma Y X, Holmstrm C, Webb J. Application of denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Acta Ecologica Sinica, 2003, 23(8): 1561-1569. [7] 曲同宝, 张建峰, 杜玮超, 等. 放牧对草地土壤微生物多样性影响研究进展. 当代生态农业, 2012, (3): 14-20. [19] 赵吉. 不同放牧率对冷篙小禾草草原土壤微生物数量和生物量的影响. 草地学报, 1999, 7(3): 223-227. [20] 张成霞, 南志标. 不同放牧强度下陇东天然草地土壤微生物三大类群的动态特征. 草业科学, 2011, 27(11): 131-136. [21] 王长庭, 龙瑞军, 王根绪, 等. 高寒草甸群落地表植被特征与土壤理化性状, 土壤微生物之间的相关性研究. 草业学报, 2010, 19(6): 25-34. [22] 刘世贵, 葛绍荣, 龙章富. 川西北退化草地土壤微生物数量与区系研究. 草业学报, 1994, 3(4):70-76. [23] 李春莉, 赵萌莉, 韩国栋, 等. 放牧对短花针茅草原土壤微生物和土壤养分的影响及其季节动态. 干旱区资源与环境, 2009, 23(4): 184-190. [24] 单贵莲, 陈功, 宁发, 等. 典型草原恢复演替过程中土壤微生物及酶活性动态变化研究. 草地学报, 2012, 20(2): 292-297. [25] 顾爱星, 范燕敏, 武红旗, 等. 天山北坡退化草地土壤环境与微生物数量的关系. 草业学报, 2010, 19(2): 116-123. [29] 陈国潮. 土壤微生物量测定方法现状及其在红壤上的应用. 土壤通报, 1999, 30(6): 197-200. [30] 高云超, 朱文珊, 陈文新. 土壤微生物生物量周转的估算. 生态学杂志, 1993, 12(6): 6-10. [43] 赵帅. 放牧与围封对呼伦贝尔针茅草原土壤微生物多样性的影响[D]. 北京: 中国农业科学院, 2011. [44] 李玉洁, 李刚, 宋晓龙, 等. 休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响. 草业学报, 2013, 22(6): 21-30. [46] 张蕴薇, 韩建国, 韩永伟, 等. 不同放牧强度下人工草地土壤微生物量碳, 氮的含量. 草地学报, 2003, 11(4): 343-346. [54] 李梓正, 朱立博, 林叶春, 等. 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 2010, 30(11): 2883-2889. [55] 张海芳, 李刚, 宋晓龙, 等. 内蒙古贝加尔针茅草原不同利用方式土壤微生物功能多样性.生态学杂志, 2012, 31(5): 1143-1149. [56] 周文萍, 向丹, 胡亚军, 等. 长期围封对不同放牧强度下草地植物和 AM 真菌群落恢复的影响. 生态学报, 2013, 33(11): 3383-3393. [57] 邹雨坤, 张静妮, 杨殿林, 等. 不同利用方式下羊草草原土壤生态系统微生物群落结构的PLFA分析. 草业学报, 2011, 20(4): 27-33. [64] 刘天增, 南志标. 草地硝化微生物与硝化作用研究进展. 草业科学, 2011, 28(6): 951-958. [78] 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. [81] 马悦欣, Holmstrm C, Webb J. 变性梯度凝胶电泳(DGGE)在微生物生态学中的应用. 生态学报, 2003, 23(8): 1561-1569. |