[1] Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 1996, 16(5): 479-508. [2] Feng Z W, Wang X K, Wu G. The Biomass and Productivity of Forest Ecosystem China[M]. Beijing: Science Press, 1999: 1-6. [3] The Ministry of Agriculture Animal Husbandry and Veterinary Department of The People’s Republic of China. Rangeland Resources of China[M]. Beijing: China Agriculture Press, 1994. [4] Ni J. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climatic Change, 2001, 49(3): 339-358. [5] Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50(2): 205-218. [6] Fang J Y, Liu G H, Xu S L. Carbon Pool of Ecosystem Chinese[M]. Beijing: China Environment Science Press, 1996. [7] Ni J. Forage yield-based carbon storage in grasslands of China. Climatic Change, 2004, 67(2-3): 237-246. [8] Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 2004, 174(2): 217-234. [9] Pu S L, Fang J Y, He J S, et al . Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 2004, 28(4): 491-498. [10] Deng L, Shangguan Z P. Distribution of natural grassland biomass and its relationship with influencing factors in Shanxi. Acta Agrestia Sinica, 2012, 20(5): 825-835. [11] Li J L, Jiang P, Liang T G. The developing processes, contents and prospects of grassland remote sensing science in China. Grassland of China, 1998, (3): 53-56. [12] Peng S L, Guo Z H, Wang B S. Applications of RS and GIS on terrestrial vegetation ecology. Chinese Journal of Ecology, 1999, 18(5): 52-64. [13] Lefsky M A, Harding D, Cohen W B, et al . Surface lidarremote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of Environment, 1998, 67(1): 83-90. [14] Wang J W, Chen G. Vegetation index and biomass estimation for grassland. Journal of Yunnan Agricultural University, 2006, 21(3): 372-375. [15] Beeri O, Phillips R, Hendrickson J, et al . Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sensing of Environment, 2007, 110(2): 216-225. [16] Cho M A, Skidmore A, Corsi F, et al . Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observations and Geoinformation, 2007, 9(4): 414-424. [17] Zhang Y N, Niu J M, Zhang Q, et al . A discussion on applications of vegetation index for estimating aboveground biomass of typical steppe. Acta Prataculturae Sinica, 2012, 21(1): 229-238. [18] Huangfu J Y, Mao F X, Lu X S. Analysis of grassland resources in southwest China. Acta Prataculturae Sinica, 2012, 21(1): 75-82. [19] Fan Y J, Hou X Y, Shi H X, et al . Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302. [20] Liu J Y, Xu X L, Shao Q Q. The spatial and temporal characteristics of grassland degradation in the three-river headwaters region in Qinghai Province. Acta Geographica Sinica, 2008, 63(4): 364-376. [21] Wang J B, Liu J Y, Shao Q Q, et al . Spatial-temporal patterns of net primary productivity for 1988-2004 based on GLOPEM-CEVSAmodel in the “three-river headwaters” region of Qinghai Province, China. Chinese Journal of Plant Ecology, 2009, 33(2): 254-269. [22] Xu B, Yang X, Tao W, et al . MODIS-based remote sensing monitoring of grass production in China. International Journal of Remote Sensing, 2008, 29: 5313-5327. [23] Jin Y, Yang X, Qiu J, et al . Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China. Remote Sensing, 2014, 6: 1496-1513. [24] Song W, Jia H, Liu S, et al . A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Three-river Watersarea[C]. Beijing: IOP Publishing, 2014. [25] Zhao F, Xu B, Yang X, et al . Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingolgrassland of northern China. Remote Sensing, 2014, 6: 5368-5386. [26] Xu D, Guo X, Li Z, et al . Measuring the dead component of mixed grassland with landsat imagery. Remote Sensing of Environment, 2014, 142: 33-43. [27] Zhou L, Xin X P, Li G, et al . Application progress on hyperspectral remote sensing in grassland monitoring. Pratacultural Science, 2009, 26(4): 20-27. [28] Zhang K, Guo N, Wang R Y, et al . Hyperspectral remote sensing estimation models for aboveground fresh biomass in Gannan grassland. Pratacultural Science, 2009, 26(11): 44-50. [29] Chu D, Pubu C R, Deji Y Z, et al . Above-ground biomass estimate methods of grassland in the central Tibet. Journal of Mountain Science, 2013, 31(11): 664-671. [30] Casas A, Riaño D, Ustin S, et al . Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sensing of Environment, 2014, 148: 28-41. [31] Qian Y R, Yang F, Yu J, et al . Vegetation index feature and spatial-temporal process analysis of desert grassland in the Fukang area of Xinjiang. Acta Prataculturae Sinica, 2013, 22(3): 25-32. [32] Huang J F, Sang C Q, Feng Z W. The remote sensing dynamic monitoring model of the grass yield of natural grassland in the middle section of the Tianshan. Journal of Natural Resources, 1993, 8(1): 10-17. [33] Liang T G, Chen Q G. Research on the dynamic monitoring model of grassland resources yield in Fukang county of Xinjiang. Remote Sensing Technology and Application, 1996, (1): 27-32. [34] Zhao W Y, Li J L, Chen Y N. Changes of eco-capacity and ecological sustainability in the north Tianshan Mountains region: taking Fukang county as a case of study. Acta Ecologica Sinica, 2008, 28(9): 4363-4371. [35] Qian Y R, Yang F, Li J L, et al . Yield and animal-feed balance of typical grassland in Xinjiang Fukang using 3S techniques. Pratacultural Science, 2013, 30(9): 1330-1337. [36] Yang F, Qian Y R, Li J L, et al . Degradation characteristics and causes of desert grassland in the northern Tianshan Mountains. Journal of Natural Resources, 2011, 26(8): 1306-1314. [37] Zhao W Y. Tianshan Mountains Desert Grassland Degradation Characteristics of Typical Mechanism and Recovery and Reconstruction Technology Research[D]. Nanjing: Nanjing University, 2006: 25. [38] Yang H F, Gang C C, Mu S J, et al . Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50. [39] Liang Y, Wei Y R, Liu A J. Based on MODIS-NDVI of the application of remote sensing in natural grassland of Inner Mongolia grassland vegetation conditions. Inner Mongolia Prataculture, 2009, 21(9): 40-44. [40] Zhao L C, Liu R T, Yang R H, et al . Study on the remote sensing classification of grassland based on the topographic factors. Pratacultural Science, 2006, 23(12): 26-30. [41] Zhang N. Scale issues in ecology: concepts of scale and analysis. Acta Ecologica Sinica, 2006, 26(7): 2340-2355. [42] An S Z. Resources of grass family germplasm in Yili prefecture of Xinjiang and their evaluation. Grassland and Turf, 2001, (2): 15-19. [1] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16(5): 479-508. [2] 冯宗伟, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999: 1-6. [3] 中华人民共和国农业部畜牧兽医司. 中国草地资源数据[M]. 北京: 中国农业出版社, 1994. [6] 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[M]. 北京: 中国环境科学出版社, 1996. [9] 朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. [10] 邓蕾, 上官周平. 陕西省天然草地生物量空间分布格局及其影响因素. 草地学报, 2012, 20(5): 825-835. [11] 李建龙, 蒋平, 梁天刚. 我国草地遥感科学发展的轨迹、内涵及展望. 中国草地, 1998, (3): 53-56. [12] 彭少麟, 郭志华, 王伯荪. RS和GIS在植被生态学中的应用及其前景. 生态学杂志, 1999, 18(5): 52-64. [14] 王建伟, 陈功. 草地植被指数及生物量的遥感估测. 云南农业大学学报, 2006, 21(3): 372-375. [17] 张艳楠, 牛建明, 张庆, 等. 植被指数在典型草原生物量遥感估测应用中的问题探讨. 草业学报, 2012, 21(1): 229-238. [18] 皇甫江云, 毛凤显, 卢欣石. 中国西南地区的草地资源分析. 草业学报, 2012, 21(1): 75-82. [19] 范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302. [20] 刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376. [21] 王军邦, 刘纪远, 邵全琴, 等. 基于遥感-过程耦合模型的1988~2004年青海三江源区净初级生产力模拟. 植物生态学报, 2009, 33(2): 254-269. [27] 周磊, 辛晓平, 李刚, 等. 高光谱遥感在草原监测中的应用. 草业科学, 2009, 26(4): 20-27. [28] 张凯, 郭铌, 王润元, 等. 甘南草地地上生物量的高光谱遥感估算研究. 草业科学, 2009, 26(11): 44-50. [29] 除多, 普布次仁, 德吉央宗, 等. 西藏高原中部草地地上生物量遥感估算方法. 山地学报, 2013, 31(11): 664-671. [31] 钱育蓉, 杨峰, 于炯, 等. 新疆阜康荒漠植被指数特征和时空过程分析. 草业学报, 2013, 22(3): 25-32. [32] 黄敬峰, 桑长青, 冯振武, 等. 天山北坡中段天然草场牧草产量遥感动态监测模式. 自然资源学报, 1993, 8(1): 10-17. [33] 梁天刚, 陈全功. 新疆阜康县草地资源产量动态监测模型的研究. 遥感技术与应用, 1996, (1): 27-32. [34] 赵万宇, 李建龙, 陈亚宁. 天山北坡区域生态承载力与可持续发展. 生态学报, 2008, 28(9): 4363-4371. [35] 钱育蓉, 杨峰, 李建龙, 等. 基于3S的新疆阜康典型草地产草量及草畜平衡分析. 草业科学, 2013, 30(9): 1330-1337. [36] 杨峰, 钱育蓉, 李建龙, 等. 天山北坡典型荒漠草地退化特征及其成因. 自然资源学报, 2011, 26(8): 1306-1314. [37] 赵万羽. 天山典型荒漠草地退化特征、机理与恢复重建技术研究[D]. 南京: 南京大学, 2006: 25. [38] 杨红飞, 刚成诚, 穆少杰, 等. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. [39] 梁燕, 魏玉荣, 刘爱军. 基于MODIS- NDVI的草地遥感在内蒙古天然草原植被状况中的应用. 内蒙古草业, 2009, 21(9): 40-44. [40] 赵连春, 刘荣堂, 杨予海, 等. 基于地形因子的草地遥感分类方法的研究. 草业科学, 2006, 23(12): 26-30. [41] 张娜. 生态学中的尺度问题: 内涵与分析方法. 生态学报, 2006, 26(7): 2340-2355. [42] 安沙舟. 新疆伊犁地区禾本科植物种质资源及其评价. 草原与草坪, 2001, (2): 15-19. |