欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2015, Vol. 24 ›› Issue (6): 25-34.DOI: 10.11686/cyxb2014478

• 研究论文 • 上一篇    下一篇

新疆伊犁地区草地植被地上生物量遥感反演

张旭琛1, 2, 朱华忠2, 钟华平2*, *, 程耀东1, 靳瑰丽3, 邵小明4   

  1. 1.兰州交通大学,甘肃 兰州 730070;
    2.中国科学院地理科学与资源研究所,北京 100101;
    3.新疆农业大学,新疆 乌鲁木齐 830052;
    4.中国农业大学,北京 100083
  • 收稿日期:2014-11-25 出版日期:2015-06-20 发布日期:2015-06-20
  • 通讯作者: 科技基础性工作专项(2012FY111900-2)资助
  • 作者简介:张旭琛(1989-),女,甘肃陇西人,硕士。E-mail:312077807@qq.com

Assessment of above-ground Biomass of Grassland using remote sensing,Yili, Xinjiang

ZHANG Xu-Chen1, 2, ZHU Hua-Zhong2, ZHONG Hua-Ping2, *, CHENG Yao-Dong1, JIN Gui-Li3, SHAO Xiao-Ming4   

  1. 1.Lanzhou Jiaotong University, Lanzhou 730070, China;
    2.Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    3.Xinjiang Agricultural University, Urumchi 830052, China;
    4.China Agricultural University, Beijing 100083, China
  • Received:2014-11-25 Online:2015-06-20 Published:2015-06-20

摘要: 本文以伊犁地区146个草地样地调查数据为基础,结合遥感及气象数据,进行草地植被地上生物量与NDVI、EVI、海拔、年均降水、年均气温、积温、干燥度、湿润指数等因子的回归分析。并通过各因子对地上生物量影响权重参数分析和加权融合,运用ArcGIS软件,反演分析了新疆伊犁地区草地植被地上生物量的空间分布特征。结果表明,新疆伊犁地区草地平均产草量约为704.96 kg/hm2,与20世纪80年代全国草地调查数据相比,产草量有所下降。草地植被地上生物量与各项因子具有较好的相关性,反演结果与伊犁地区的地形、地貌、气候特征基本吻合,反映了伊犁地区草地植被的空间分布特征。地上生物量反演结果得到验证,预测值与实测值之间相关系数(R2)为0.8532;均方根误差(RMSE)为216.559 kg/hm2,偏离度为22.92%,可以为新疆伊犁地区草地资源合理利用与评价提供参考。

Abstract: The relationship between the above-ground biomass of grassland vegetation in Yili, Xinjiang (assessed with cut quadrats) and the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), altitude, annual precipitation, annual mean temperature, accumulated temperature and dryness and wetness indices was analyzed using regression. Subsequently, an ArcGIS interpolation method was used to map the spatial distribution of above ground biomass of the grassland. There was a strong relationship between above-ground biomass and the independent factors assessed; the multiple regression coefficient (R2) was 0.85 and the RMSE was 216.56 kg/ha. It was concluded that the simulation data used in the study could be used to reliably monitor and assess grassland productivity and dynamics.