欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2015, Vol. 24 ›› Issue (2): 104-115.DOI: 10.11686/cyxb20150213

• 研究论文 • 上一篇    下一篇

28种植物种子形态学性状及其萌发对绵羊瘤胃消化的反应

杨洁晶, 万娟娟, 娜丽克斯, 任爱天, 鲁为华*   

  1. 石河子大学动物科技学院,新疆 石河子832003
  • 收稿日期:2014-08-20 出版日期:2015-02-20 发布日期:2015-02-20
  • 作者简介:杨洁晶(1988-),女,河北石家庄人,在读硕士。E-mail:juncai19881004@163.com
  • 基金资助:
    国家自然科学基金(31360568)和教育部博士点新教师基金(20126518120004)资助

Seed morphology and effect of sheep rumen digestion on germinability of 28 grass of Tianshan

YANG Jiejing, WAN Juanjuan, Narkes Wali, REN Aitian, LU Weihua*   

  1. College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
  • Received:2014-08-20 Online:2015-02-20 Published:2015-02-20

摘要: 以天山北坡低山带的主要植物种子作为研究对象,观测和分析了该区的28种(禾本科、藜科、豆科、菊科、蓼科、蔷薇科、唇形科、葱科、石竹科、蒺藜科和苋科)植物种子的形态特征及其生物学特性,并对种子进行绵羊瘤胃消化实验,探讨了种子形态特征和消化前后萌发行为之间的关系。结果表明,28种植物种子的形态特征表现出丰富的多样性,种子的重量变化范围大,最大值是最小值的22倍。种子的长、宽和高的变化范围也较大,最大值分别是最小值的14,24和22倍。形状指数的测定结果表明种子主要以扁平状和近似球状为主,大部分植物的种子具有芒和果翅等附属结构,个别种子具有粘液结构。禾本科、藜科和豆科植物种子形态学特征可作为表征亲缘关系的指标,分类结果具有很好的一致性,其他科属植物种类较少,形态学特征分类和亲缘关系分类之间的一致性未能得到很好地反映。种子吸水过程均分为3个阶段,即快速吸水、缓慢吸水和稳定阶段。豆科植物种子的发芽率很低,仅在 4.2%~15.0%之间,菊科植物的萌发率为97.0%,6种藜科植物种子的萌发率为41.0%~97.0%,10种禾本科植物种子的萌发率为 53%~99%。菊科、藜科和禾本科萌发率要明显高于豆科。经过瘤胃消化后的种子,除了豆科种子其萌发率提高之外,其他种子萌发都受到了明显抑制,但仍有部分种子存活并能成功萌发,这为种子消化道传播提供了可能。消化前原始种子萌发率与其形状指数和重量存在显著相关,消化后种子萌发率与种子形状指数和种子长度存在显著相关。并且亲缘关系接近的类群种子其消化前后的萌发行为具有趋同性。

Abstract: Seeds from 28 plant species belonging to the Poaceae, Chenopodiaceae, Fabaceae, Asteraceae, Polygonaceae, Rosaceae, Lamiaceae, Alliaceae, Caryophyllaceae, Zygophyllaceae and Amaranthaceae, which are the main plant families present in the four grassland types on the north slope of Tianshan (regional indication would be good, eg. Northwest China), were collected, and their morphological characters recorded and germinability before and after sheep-rumen-passage determined. The seeds of the 28 plant species showed rich diversity in morphological characteristics, and their weights spanned a wide range, with the heaviest being 22 times the weight of the lightest. Similarly for dimensions of length, width and height, and the maxima and minima of the various species differed by a factor of 14, 24, and 22, respectively. A shape index indicated that in most species seeds were either markedly flattened or approximately sphericalin shape. For most species seed morphology was modified by adjacent structures, such as an awnon an adhering lemma in the Poacea, or fruiting wings in some herbs. Some seeds were borne in mucilaginous structures. Morphological characteristics of Poaceae, Chenopodiaceae and Fabacea were taxonomically diagnostic. Seeds of the remaining families did not show any phylogentic consistency in their morphological characteristics. The water absorption of plant seeds during germination can be divided into three stages: a fast water absorption phase, a slow water absorption phase and constant water content phase. The germination rate of legume seeds was very low, ranging from 4.2%-15.0%, while germination rate of Asteraceae species was up to 97%; the germination rate of 6 Chenopodiaceae species ranged from 41%-97%, and of 10 Poaceae species ranged from 53%-99%. After sheep-rumen-passage, the germination rate of Fabaceae seeds was increased, whereas the germinability of seeds of other families was decreased. However, despite reduced germinability after rumen passage, because of the survival of some seeds sheep browsing provides a possible pathway for seed dispersal. The germination rate of seed before rumen digestion was significantly associated with shape index and seed weight, while it was significantly correlated with seed shape index and seed length after rumen digestion. Additionally, there was convergence in germination behavior before and after digestion among seeds that have a close genetic relationship.