欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2015, Vol. 24 ›› Issue (3): 195-203.DOI: 10.11686/cyxb20150320

• 特邀述评 • 上一篇    下一篇

不同密度短星翅蝗危害后羊草的高光谱变化及对产草量的影响

赵凤杰1,2,王正浩1,3,王慧萍4,吴惠惠1,2,刘航玮1,2,王广君1,2*,张泽华1,2   

  1. 1.中国农业科学院植物保护研究所植物病虫害国家重点实验室,北京100193;
    2.农业部锡林郭勒草原有害生物科学观测实验站,内蒙古 锡林浩特026000;
    3.甘肃农业大学草业学院,昆虫生态实验室,甘肃 兰州730070;
    4.内蒙古太仆寺旗草原工作站,内蒙古 太仆寺旗027000
  • 收稿日期:2014-03-12 修回日期:2014-04-22 出版日期:2015-03-20 发布日期:2015-03-20
  • 通讯作者: E-mail:guangjunwang@sina.com
  • 作者简介:赵凤杰(1987-),女,山东东营人,硕士。E-mail:fjzion@163.com
  • 基金资助:
    公益性行业(农业)科研专项经费资助(201003079)和现代农业产业技术体系建设专项资金(CARS-35-07)资助。

The effects of hyper spectral change on grassland biomass after damage by Calliptamus abbreviates populations of different densities

ZHAO Fengjie1,2, WANG Zhenghao1,3, WANG Huiping4, WU Huihui1,2, LIU Hangwei1,2, WANG Guangjun1,2*, ZHANG Zehua1,2   

  1. 1.College of Agronomy and Plant Protection of Qingdao Agricultural University, Key Laboratory of Plant Disease and Pest Integrated Management of Shandong Province, Qingdao 266109, China;
    2. College of Animal Science and Technology, Qingdao 266109, China
  • Received:2014-03-12 Revised:2014-04-22 Online:2015-03-20 Published:2015-03-20

摘要: 为建立羊草草地高光谱植被指数(NDVI)与短星翅蝗危害密度之间的关系模型,估计短星翅蝗危害造成的牧草损失,使用短星翅蝗按5,10,20,40和60头/m25个密度梯度在羊草草地进行田间取食危害试验,测定不同危害时长后的NDVI值,最后根据NDVI和生物量的对应关系计算蝗虫危害后的牧草损失量。结果发现短星翅蝗危害羊草草地后,随短星翅蝗密度增加,NDVI值呈现逐渐降低的趋势,但是在密度为10头/m2时,归一化植被指数NDVI值略有上升。模拟短星翅蝗危害不同时间后NDVI与密度之间的关系方程为:Y=0.5932+0.0014x-6.93×10-5x2(5 d),Y=0.5950-4.8500×10-4x-4.01×10-5x2(10 d),Y=0.5848-0.0024x-1.61×10-5x2(15 d),Y=0.6422-0.0031x-2.12×10-5x2(20 d)。其中, y为植被指数NDVI,x为蝗虫密度。同时研究发现,低密度情况下(不大于20头/m2),随危害时间延长短星翅蝗取食对NDVI校正值无显著影响;高密度情况下(大于20头/m2),随时间延长NDVI校正值迅速降低,不同密度间的差异显著。根据草地生物量与NDVI的回归方程(y=614.15x-119.28)将NDVI值转换成牧草损失量,发现随虫口密度增加,牧草损失量呈增加趋势。低密度短星翅蝗(5,10头/m2)危害情况下,羊草草地有超补偿作用,当蝗虫密度超过40头/m2时,生物量降低趋势非常明显。研究结果表明,归一化植被指数NDVI变化与蝗虫危害密度相关关系显著,随着蝗虫密度的增大,NDVI的值先增长后降低。根据蝗虫危害造成的光谱变化,可以估计蝗虫危害密度及造成的损失。本研究为进一步开展蝗灾的大区域遥感监测奠定了基础。

Abstract: In order to evaluate grassland loss caused by Calliptamus abbreviates, a study has been undertaken to establish the correlation between the Normalized Difference Vegetation Index (NDVI) of Leymus chinensis grassland, as measured with a high resolution radiometer, and the density of C. abbreviates populations. Five groups of C. abbreviates with densities of 5, 10, 20, 40 and 60 heads/m2 were used to simulate the damage caused by locusts feeding in the field. NDVI was measured after different damage periods and losses caused by the locusts were calculated using a regression model of NDVI and grassland biomass. Results indicated that NDVI decreased with increases in locust density. However, at a density of 10 heads/m2 the NDVI rose slightly. The regression equations of NDVI and locust density under different damage periods were: y=0.5932+0.0014x-6.93×10-5x2 (5 days), y=0.5950-4.8500×10-4x-4.01×10-5x2 (10 days), y=0.5848-0.0024x-1.61×10-5x2 (15 days) and y=0.6422-0.0031x-2.12×10-5x2 (20 days); where y represents the NDVI score and x locust density. The study found that in the case of low densities (less than 20 heads/m2) the damage caused by C. abbreviates had no obvious effect on NDVI with the extension of damage time. However, under high densities (more than 20 heads/m2) the NDVI decreased rapidly. The regression model (y=614.15x-119.28) shows that NDVI data can be used to measure grassland loss. The study indicated that low densities of C. abbreviates (5 and10 heads/m2) had significantly less effect on L. chinensis grassland but that when locust density reached 40 heads/m2 the biomass decreased sharply. Results thus showed that the hyper spectral grassland vegetation index (NDVI) and the damage caused by locust density are significantly correlated. The spectral change caused by locust damage can thus be used to estimate both the density of locusts and the extent of grassland loss. This research provides a foundation of further large-scale grassland monitoring with hyper spectral remote sensing.