[1] Zhang Y Y, Ren T, Lu J W, et al . Effect of different forms of potassium fertilizer ratio on rape biomass and potassium nutrient utilization. Soil and Fertilizer Science in China, 2013, (3): 74-77. [2] Shang Z C, Liu G, Bao J. Progress and prospect of technology for development of potassium resources in China. Chemical Fertilizer Industry, 2012, (4): 5-8. [3] Qu J F, Zhao F J, Fu S B. Current situation and application prospects of water insoluble potash. Modern Chemical Industry, 2010, 30(6): 16-19. [4] Yan H Y, Liu K X, Liao Z W. The effect of chemical, biological activation on potassium release from K-feldspar. Journal of South China Agricultural University, 2013, 34(2): 149-152. [5] Gu H N, Wang N, Yang Y Q. Research progress of preparing potash fertilizer with potassium-bearing minerals. Chemical Industry and Engineering Progress, 2011, 30(2): 2450-2455. [6] Liu J, Han Y X, Yin W Z. Current situation and prospect of preparing potash fertilizer with potassium-bearing minerals. Non-Ferrous Mining and Metallurgy, 2005, 21: 172-174. [7] Wang J G, Zhang F S, Cao Y P, et al . Effect of plant types on release of mineral potassium from gneiss. Nutrient Cycling in Agroecosystems, 2000, 56: 37-44. [8] Yan J Y, Wu M R, Xiao Y S. Effect of mineral potash fertilizer in red soil. Non-Metal Mine, 2003, 26(4): 27-28. [9] Priyono J, Gilkes R J. High-energy milling improves the effectiveness of silicate rock fertilizer: a greenhouse assessment. Communications in Soil Science and Plant Analysis, 2008, 39: 358-369. [10] Bolland M D A, Baker J M. Powdered granite is not an effective fertilizer for clover and wheat in sandy soils from western Australia. Nutrient Cycling in Agroecosystems, 2000, 56: 59-68. [11] Bakken A K, Gautneb H, Sveistrup T, et al . Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems, 2000, 56: 53-57. [12] Hinsinger P, Bolland M D A, Gilkes R J. Silicate rock powder: effect on selected chemical properties of a range of soils from western Australia and on plant growth as assessed in a glasshouse experiment. Fertilizer Research, 1996, 45: 69-79. [13] Wang D S, Liang C H, Du L Y. Effect of organic acids on K release from K-bearing minerals. Journal of Shenyang Agricultural University, 2007, 38(1): 65-69. [14] Shen Q H, Wang H Y, Zhou J M, et al . Dynamic release of potassium from potassium bearing minerals as affected by ion species in solution. Soils, 2009, 41(6): 862-868. [15] Lu R K. Analytical Methods for Soil and Agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. [16] Xu Z M, Huang R Q, Tang Z G. Kinetics of silicate mineral dissolution and its implications for landslide studies. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1479-1490. [17] Xu X Y, Ma Y J. K-release from potassium-containing minerals in soil and its significance for plant nutrition. Chinese Journal of Soil Science, 2001, 32(4): 173-176. [18] Eick M J, Grossl P R, Golden D C, et al . Dissolution kinetics of a lunar glass simulant at 25℃: the effect of pH and organic acids. Geochimica et Cosmochimica Acta, 1996, 60(1): 157-170. [19] Oelkers E H, Gislason S R. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25℃ and pH=3 and 11. Geochimica et Cosmochimica Acta, 2001, 65(21): 3671-3681. [20] Li W W, Wu R H, Liu Z. Mechano-chemical effects brought from superfine grinding tourmaline. Bulletin of The Chinese Ceramic Society, 2010, 29(1): 66-71. [21] Kleiv R A, Thornhill M. Production of mechanically activated rock flour fertilizer by high intensive ultrafine grinding. Minerals Engineering, 2007, (20): 334-341. [22] Priyono J, Gilkes R J. Dissolution kinetics of milled-silicate rock fertilizer in organic acid. Journal of Tanah Trop, 2008, 13(1): 1-10. [23] Gillman G P, Burkett D C, Coventry R J. Amending highly weathered soils with finely ground basalt rock. Applied Geochemistry, 2002, (17): 987-1001. [24] Coroneos C, Hinsinger P, Gilkes J R. Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fertilizer Research, 1996, 45: 143-152. [25] Priyono J, Arifin Z. Adding organic matter enhanced the effectiveness of silicate rock fertilizer for food crops grown on nutritionally disorder soils: a glasshouse assessment. Journal of Tanah Trop, 2012, 17(2): 97-104. [1] 张洋洋, 任涛, 鲁剑巍, 等. 不同形态钾肥配比对油菜生物量及钾肥利用率的影响. 中国土壤与肥料, 2013, (3): 74-77. [2] 商照聪, 刘刚, 包剑. 我国钾资源开发技术进展与展望. 化肥工业, 2012, (4): 5-8. [3] 曲均峰, 赵福军, 傅送保. 非水溶性钾研究现状与应用前景. 现代化工, 2010, 30(6): 16-19. [4] 鄢海印, 刘可星, 廖宗文. 化学及生物活化钾长石的释钾效果比较. 华南农业大学学报, 2013, 34(2): 149-152. [5] 顾汉念, 王宁, 杨永琼. 不溶性含钾岩石制备钾肥研究现状与评述. 化工进展, 2011, 30(11): 2450-2455. [6] 刘杰, 韩跃新, 印万忠. 难溶性钾矿资源制备钾肥研究现状及展望. 有色矿冶, 2005, 21: 172-174. [8] 晏结义, 吴美仁, 肖雨生. 矿物钾肥在红壤中的试验效果分析. 非金属矿, 2003, 26(4): 27-28. [13] 王东升, 梁成华, 杜立宇. 有机酸对含钾矿物钾素释放的影响. 沈阳农业大学学报, 2007, 38(1): 65-69. [14] 沈钦华, 王火焰, 周健民, 等. 含钾矿物中钾的释放及其与溶液环境中离子种类的关系. 土壤, 2009, 41(6): 862-868. [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [16] 徐则民, 黄润秋, 唐正光. 硅酸盐矿物溶解动力学及其对滑坡研究的意义. 岩石力学与工程学报, 2005, 24(9): 1479-1490. [17] 徐晓燕, 马毅杰. 土壤矿物钾的释放及其在植物营养中的意义. 土壤通报, 2001, 32(4): 173-176. [20] 李雯雯, 吴瑞华, 刘贞. 电气石超细粉碎机械力化学效应研究. 硅酸盐通报, 2010, 29(1): 66-71. |