[1] Smith S D, Huxman T E, Zitzer S F, et al . Elevated CO 2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408: 79-82. [2] Schwinning S, Sala O E, Loik M E. Thresholds, memory and seasonality: understanding pulse dynamics in arid/semiarid ecosystems. Oecologia, 2004, 141: 191-193. [3] Gong D Y, Shi P J, Wang J A. Daily precipitation changes in the semi-arid region over northern China. Journal of Arid Environment, 2004, 59: 771-784. [4] Xu L G, Zhou H F, Liang C, et al . Multi time scale variability of precipitation in the desert region of north China. Journal of Hydraulic Endineering, 2009, 40(8): 1002-1011. [5] Pan Y X, Wang X P. Spatial variation of soil moisture in Revegetated desert area. Journal of Desert Research, 2007, 27(2): 250-256. [6] Su Z Z, Lu Q, Wu B, et al . Potential impact of climatic change and human activities on desertification in China. Journal of Desert Research, 2006, 26(3): 329-335. [7] Giorgi F, Mearns L O, Shields C, et al . Regional nested model simulations of present day and 2×CO 2 climate over the central plains of the U.S. .Climatic Change, 1998, 40: 457-493. [8] Weltzin J F, Loik M E, Schwinning S, et al . Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 2003, 53: 941-952. [9] Heisler-White J L, Knapp A K, Kelly E F. Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 2008, 158: 129-140. [10] Fay P A, Carlisle J D, Knapp A K, et al . Altering rainfall timing and quantity in a mesic grassland ecosystem: design and performance of rainfall manipulation shelters. Ecosystems, 2000, 3: 308-319. [11] Knapp A K, Fay P A, Blair J M, et al . Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298: 2202-2205. [12] Walter H. Natural savannahs as a transition to the arid zone. Ecology of Tropical and Subtropical Vegetation[M]. Edinburgh: Oliver and Boyd, 1971: 238-265. [13] Chou W W, Silver W L, Jackson R D, et al . The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Global Change Biology, 2008, 14: 1382-1394. [14] He Y H, Tian Y L, Ye D M, et al . Model of aboveground biomass of Nitraria tangutorum and relationship between biomass and leaf area. Journal of Desert Research, 2005, 25(4): 541-546. [15] Wu Y, Zheng X J, Li Y, et al . Photosynthetic responses and biomass allocation strategies of desert herbaceous plants under different precipitation patterns. Chinese Journal of Ecology, 2013, 32(10): 2583-2590. [16] Li Q Y, Zhao W Z. Responses of seedings of five desert species to simulated precipitation change. Journal of Glacilogy and Geocryology, 2006, 28(3): 414-420. [17] Luo Y Z, Li G. The effect of water stress on growth and biomass of Medicago sativa cv. Xinjiangdaye. Acta Prataculturae Sinica, 2014, 23(4): 213-219. [18] Song C, Zeng F J, Liu B, et al . Influence of water condition on morphological characteristics and biomass of Calligonum caputmedusae Schrenk seedings. Chinese Journal of Ecology, 2012, 31(9): 2225-2233. [19] Ma T C, Yu R R, Chen R J, et al . Effect of drought stress simulated with PEG-6000 on root system in rice seeding. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1206-1211. [20] Shan L S, Li Y, Duan Y N, et al . Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1198-1205. [21] Canadell J, Zedler P H. Ecology and Biogeography of Mediterranean Ecosystems in Chile, Califonia and Australia[M]. New York: Springer Verlag, 1995: 177-210. [22] Zhang F, Shangguan T L, Li S Z. Improvement on the modeling method of biomass brush. Chinese Journal of Ecology, 1993, 12(6): 67-69. [23] Li J W. Forest Ecology[M]. Beijing: China Forestry Publishing House, 1994: 100-103. [24] Neff J C, Townsend A R, Gleixner G, et al . Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature, 2002, 419: 915-917. [25] Zhou S X, Wu D X, Zhang L, et al . Effects of changing precipitation patterns on seedlings of Stipa grandis , a dominant plant of typical grassland of Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1155-1164. [26] Schwinning S, Sala O E. Hierarchy of responses to resource pulses in arid and semiarid ecosystems. Oecologia, 2004, 141(2): 211-220. [27] Wainwright J, Mulligan M, Thomes J. Plant sand water in dry lands. In: Baird A J, Wilby R L. Ecohydrology: Plants and Water in Terrestrial and Aquatic Environment[M]. London: Routledge, 1999: 78-126. [28] Sala O E, Lauernroth W K. Small rainfall events: an ecologica role in semiarid regions. Oecologia, 1982, 53(3): 301-304. [29] Noy-Meir I. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 1973, 4: 25-51. [30] Sala O E, Lauenroth W K, Parton W J. Long-term soil-water dynamics in the shortgrass steppe. Ecology, 1992, 73: 1175-1181. [31] Heisler-White J L, Blair J M, Kelly E F, et al . Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Global Change Biology, 2009, 15: 2894-2904. [32] Ackerly D D, Bazzaz F A. Leaf dynamics, self shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia, 1995, 101: 28-29. [33] Fernández R J, Wang M B, Reynolds J F. Do morphological changes mediate plant responses to water stress? A steady-state experiment with two C 4 grasses. New Phytologist, 2002, 155: 79-83. [34] Liu Z, Zeng F J, An G X, et al . Influence of irrigation amounts on seeding growth and biomass allocation of Calligonum caputmedusae at the southern fringe of the Taklimakan desert. Journal of Desert Research, 2012, 32(6): 1655-1661. [35] Zhong Z B, Zhou G Y, Yang L C, et al . The biomass allocation patterns of desert shrub vegetation in the Qaidam Basin, Qinghai, China. Journal of Desert Research, 2014, 34(4): 1042-1048. [36] Xiao C W, Zhou G S, Zhao J Z. Effect of different water conditions on growth and morphology of Artemisia ordosica Krasch. seedlings in Maowusu sandland. Acta Ecologica Sinica, 2001, 21(12): 2136-2140. [37] Enquist B J, Niklas K J. Invariant scaling relations across treedom inated communities. Nature, 2001, 410: 655-660. [38] Wang W, Peng S S, Fang J Y. Biomass distribution of natural grasslands and it response to climate change in north China. Arid Zone Research, 2008, 25(1): 90-97. [39] Wei Q S, Zhao M, Li C L, et al . Growth and biomass allocation of Chilopsis linearis under different soil water stresses. Chinese Journal of Ecology, 2006, 25(1): 7-12. [40] Mao W, Li Y L, Cui D, et al . Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia. Chinese Journal of Plant Ecology, 2014, 38(2): 125-133. [41] Li Y, Qiman Y, Zhu Y. Effects of water stress on photosynthetic characteristics and biomass partition of Elaeagnus moorcroftii . Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2493-2499. [4] 徐利岗, 周宏飞, 梁川, 等. 中国北方荒漠区降水多时间尺度变异性研究. 水利学报, 2009, 40(8): 1002-1011. [5] 潘颜霞, 王新平. 荒漠人工植被区浅层土壤水分空间变化特征分析. 中国沙漠, 2007, 27(2): 250-256. [6] 苏志珠, 卢琦, 吴波, 等. 气候变化和人类活动对我国荒漠化的可能影响. 中国沙漠, 2006, 26(3): 329-335. [14] 何炎红, 田有亮, 叶冬梅, 等. 白刺地上生物量关系模型及其与叶面积关系的研究. 中国沙漠, 2005, 25(4): 541-546. [15] 吴玉, 郑新军, 李彦, 等. 荒漠草本植物在不同降雨模式下的光合响应和生物量分配策略. 生态学杂志, 2013, 32(10): 2583-2590. [16] 李秋艳,赵文智. 5种荒漠植物幼苗对模拟降水量变化的响应. 冰川冻土, 2006, 28(3): 414-420. [17] 罗永忠, 李广. 土壤水分胁迫对新疆大叶苜蓿的生长及生物量的影响. 草业学报, 2014, 23(4): 213-219. [18] 宋聪, 曾凡江, 刘波, 等. 不同水分条件对头状沙拐枣幼苗形态特征及生物量的影响. 生态学杂志, 2012, 31(9): 2225-2233. [19] 马廷臣, 余蓉蓉, 陈荣军, 等. PEG-6000模拟干旱对水稻幼苗期根系的影响. 中国生态农业学报, 2010, 18(6): 1206-1211. [20] 单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 2014, 34(6): 1198-1205. [22] 张峰, 上官铁梁, 李素珍. 关于灌木生物量建模方法的改进. 生态学杂志, 1993, 12(6): 67-69. [23] 李景文. 森林生态学[M]. 北京: 中国林业出版社, 1994: 100-103. [25] 周双喜, 吴冬秀, 张琳, 等. 降雨格局变化对内蒙古典型草原优势种大针茅幼苗的影响. 植物生态学报, 2010, 34(10): 1155-1164. [34] 刘镇, 曾凡江, 安桂香, 等. 塔克拉玛干沙漠南缘头状沙拐枣幼苗生长和生物量分配对不同灌溉量的响应. 中国沙漠, 2012, 32 (6): 1655-1661. [35] 钟泽兵, 周国英, 杨路存, 等. 柴达木盆地几种荒漠灌丛植被的生物量分配格局. 中国沙漠, 2014, 34(4): 1042-1048. [36] 肖春旺, 周广胜, 赵景柱. 不同水分条件对毛乌素沙地油蒿幼苗生长和形态的影响. 生态学报, 2001, 21(12): 2136-2140. [38] 王娓, 彭书时, 方精云. 中国北方天然草地的生物量分配及其对气候的响应. 干旱区研究, 2008, 25(1): 90-97. [39] 尉秋实, 赵明, 李昌龙, 等. 不同土壤水分胁迫下沙漠葳的生长及生物量的分配特征. 生态学杂志, 2006, 25(1): 7-12. [40] 毛伟, 李玉霖, 崔夺,等.沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应. 植物生态学报, 2014, 38(2): 125-133. [41] 李阳,齐曼·尤努斯, 祝燕. 水分胁迫对大果沙枣光合特性及生物量分配的影响. 西北植物学报, 2006, 26(12): 2493-2499. |