[1] Weiland P. Biogas production: current state and perspectives. Applied Microbiology Biotechnology, 2010, 85(4): 849-860. [2] Weinberg Z G, Chen Y. Effects of storage period on the composition of whole crop wheat and corn silages. Animal Feed Science and Technology, 2013, 185(3-4): 196-200. [3] Zheng Y, Yu C W, Cheng Y S, et al . Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresource Technology, 2011, 102(2): 1489-1495. [4] Stevenson D M, Muck R E, Shinners K J, et al . Use of real time PCR to determine population profiles of individual species of lactic acid bacteria in alfalfa silage and stored corn stover. Applied Microbiology Biotechnology, 2006, 71(3):329-338. [5] Yang D L, Wang J X, Feng W H, et al . Effects of broccoli stems and leaves and maize straw mix-ensiling on silage quality. Pratacultural Science, 2014, 31(3): 551-557. [6] Li S C, Huang X H, Wang J, et al . Effects of different mixed ratio and fermenting period on efficiency of mixed silage of melilotus albus and corn straw. Pratacultural Science, 2014, 31(2): 321-327. [7] Huang X H, Li S C, Li D H, et al . Fermentation quality and content of poisonous substances in Sophora alopecuroides and corn straw mixed silage. Pratacultural Science, 2013, 30(10): 1633-1639. [8] Zhang F Q, Bao H F, Cui W D, et al . Dynamic changes of lactic acid bacteria during a 15-day ensilage of corn. Microbiology China, 2010, 37(6): 834-838. [9] Tohno M, Kobayashi H, Nomura M, et al . Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Journal of Animal Science, 2012, 83(2): 111-120. [10] Ennahar S, Cai Y, Fujita Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Applied Environmental Microbiology, 2003, 69(1): 444-451. [11] Si B W, Wang Z L, Sun Q Z, et al . Fermentation characteristics and changes of lactic acid bacteria isolated from ensiling Lespedeza hedysaroides . Pratacultural Science, 2012, 29(4): 650-657. [12] Cai Y M, Pang H L, Kitahara M, et al . Lactobacillus nasuensissp . nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus . International Journal of Systematic and Evolutionary Microbiology, 2012, 62(5): 1140-1144. [13] Yang Y, Shi C, Guo X S. Characterization and identification of Weissella species isolated from Kobresia littledalei growing in alpine meadows. Acta Prataculturae Sinica, 2014, 23(1): 266-275. [14] Si B W, Wang Z L, Sun Q Z, et al . Isolation and identification of high-quality lactic acid bacteria in Hedysarum fruticosum pall. silage. Acta Agrestia Sinica, 2012, 20(1): 166-170. [15] Weatherburn M. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 1967, 39(8): 971-974. [16] Owens V N, Albrecht K A, Muck R E, et al . Protein degradation and fermentation characteristics of red clover and alfalfa silage harvested with varying levels of total nonstructural carbohydrates. Crop Science, 1999, 39(6): 1873-1880. [17] Shao T, Zhang Z X, Shimojo M, et al . Comparison of fermentation characteristics of Italian ryegrass ( Lolium multiflorum Lam.) and guineagrass ( Panicum maximum Jacq.) during the early stage of ensiling. Asian-Australasian Journal of Animal Science, 2005, 18(22): 1727-1734. [18] Guo X H, Ling D W. Modern Experiment Technology of Lactic Acid Bacteria[M]. Beijing: Science Press, 2013: 285-286. [19] Mora D, Fortina M G, Nicastro G, et al . Genotypic characterisation of thermophilic bacilli: a study on new soil isolates and several reference strains. Research Microbiology, 1998, 149(10): 711-722. [20] Jensen M A, Webster J A, Strauss N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied Polymerase Environmental Microbiology, 1993, 59(4): 945-952. [21] Xu C C. Silage Science and Technology[M]. Beijing: Science Press, 2013. [22] Wang X J, Yang Y, Zhang X Q, et al . To make biofuel: cutting the lignin or loosening lignin’s grip. Scientia Agricultura Sinica, 2015, 48(2): 229-240. [23] Liu J J, Gao L J, Shi J F, et al . Lactic acid bacteria community and Lactobacillus plantarum improving silaging effect of switch grass. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 295-302. [24] Kondo M, Kita K, Yokota H. Feeding value to goats of whole-crop oat ensiled with tea waste. Animal Feed Science and Technology, 2004, 113(1-4): 71-81. [25] Ge J, Yang C J, Yang Z M, et al . Quality of mixed naked oats ( Avena nuda ) and alfalfa ( Medicago sativa ) silage. Acta Prataculturae Sinica, 2015, 24(4): 104-113. [26] Jiang H, Fang L, Zhou X L, et al . Improve alfalfa silage quality by adding alhagi sparsifolia shap in initial bloom stage. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 328-335. [5] 杨道兰, 汪建旭, 冯炜弘, 等. 花椰菜茎叶与玉米秸秆的混贮品质. 草业科学, 2014, 31(3): 551-557. [6] 李树成, 黄晓辉, 王静, 等. 白花草木樨与玉米秸秆混合青贮的发酵品质及有毒成分分析. 草业科学, 2014, 31(2): 321-327. [7] 黄晓辉, 李树成, 李东华, 等. 苦豆子和玉米秸秆的混合青贮. 草业科学, 2013, 30(10): 1633-1639. [8] 詹发强, 包慧芳, 崔卫东, 等. 玉米青贮过程中乳酸菌动态变化. 微生物学通报, 2010, 37(6): 834-838. [11] 司丙文, 王宗礼, 孙启忠, 等. 尖叶胡枝子青贮微生物数量变化及发酵特性. 草业科学, 2012, 29(4): 650-657. [13] 杨杨, 石超, 郭旭生. 高寒草甸魏斯氏乳酸菌的分离鉴定及理化特性研究. 草业学报, 2014, 23(1):266-275. [14] 司丙文, 王宗礼, 孙启忠, 等. 山竹岩黄芪青贮中优质乳酸菌的分离和鉴定. 草地学报, 2012, 20(1): 166-170. [18] 郭兴华, 凌代文. 乳酸细菌现代研究实验技术[M]. 北京: 科学出版社, 2013: 285-286. [21] 徐春城. 现代青贮理论与技术[M]. 北京: 科学出版社, 2013. [22] 王晓娟, 杨阳, 张晓强, 等. 木质素与生物燃料生产: 降低含量或解除束缚. 中国农业科学, 2015, 48(2): 229-240. [23] 刘晶晶, 高丽娟, 师建芳, 等. 乳酸菌复合系和植物乳杆菌提高柳枝稷青贮效果. 农业工程学报, 2015, 31(9): 295-302. [25] 葛剑, 杨翠军, 杨志敏, 等. 紫花苜蓿和裸燕麦混贮发酵品质和营养成分分析. 草业学报, 2015, 24(4): 104-113. [26] 蒋慧, 方雷, 周小玲, 等. 添加初花期骆驼刺改善苜蓿青贮品质. 农业工程学报, 2014, 30(17): 328-335. |