欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2015, Vol. 24 ›› Issue (11): 48-57.DOI: 10.11686/cyxb2015131

• 研究论文 • 上一篇    下一篇

紫花苜蓿MsWRKY33转录因子的分离及遗传转化研究

冯光燕1, 王学敏2, *, 付媛媛2, 方志红2, 高洪文2, 张新全1, *   

  1. 1.四川农业大学草业科学系,四川 温江 611130; 2.中国农业科学院北京畜牧兽医研究所,北京100193
  • 收稿日期:2015-03-10 出版日期:2015-11-20 发布日期:2015-11-20
  • 通讯作者: E-mail:wangxuemin@caas.cn,zhangxq@sicau.edu.cn
  • 作者简介:冯光燕(1988-),男,四川遂宁人,在读硕士。
  • 基金资助:
    现代农业产业技术体系牧草产业体系(CARS-35-01),国家自然科学基金项目(31101755)和中国农业科学院科技创新工程(ASTIP-IAS10)资助

Isolation of MsWRKY33 transcription factor and its genetic transformation in Medicago sativa

FENG Guang-Yan1, WANG Xue-Min2, *, FU Yuan-Yuan2, FANG Zhi-Hong2, GAO Hong-Wen2, ZHANG Xin-Quan1, *   

  1. 1.Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang 611130, China; 2.Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193, China
  • Received:2015-03-10 Online:2015-11-20 Published:2015-11-20

摘要: WRKY转录因子是植物特有的转录因子,广泛参与植物对多种逆境胁迫的反应。但是对紫花苜蓿中WRKY转录因子的研究还较少。本研究从紫花苜蓿中克隆了一个WRKY I类转录因子MsWRKY33。该基因CDS全长1536 bp,编码512个氨基酸,结构分析显示MsWRKY33包括两个WRKY结构域和一个C2H2锌指结构(C-X4-C-X23-H-X-H),表明其属于WRKY I 族WRKY转录因子。亚细胞定位预测MsWRKY33蛋白定位在细胞核。MsWRKY33基因受盐、干旱和冷胁迫诱导,暗示基因可能参与了这些逆境胁迫的调控。构建原核表达载体pET-MsWRKY33, SDS-PAGE分析表明在大肠杆菌中表达了MsWRKY33蛋白。扩增MsWRKY33编码区cDNA,以pBI121为基础载体,构建植物超表达载体pBI121-MsWRKY33。采用农杆菌介导的愈伤组织培养法转化紫花苜蓿。利用nptⅡ基因引物和载体特异引物检测抗性苗呈阳性,表明目的基因已成功导入紫花苜蓿基因组中。qRT-PCR检测发现,MsWRKY33基因在转基因株系中得到增强表达。本研究为进一步探索WRKY转录因子基因在紫花苜蓿抗逆性调控中的作用奠定了基础。

Abstract: Plant-specific WRKY transcription factors (TFs) are widely involved in various stress responses. However, their roles in abiotic stresses are still not well known in alfalfa (Medicago sativa). In this study, a WRKY gene, containing 1536 bp CDS length encoding a putative protein of amino acid 512, designated as MsWRKY33, was isolated from alfalfa. The alignment results revealed that the MsWRKY33 protein contains two conserved DNA-binding domains (WRKY domain) of 60 amino acids and a C2H2 zinc finger region (C-X4-C-X23-H-X-H), falling into group I of the WRKY protein. Protein localization prediction analysis indicated that MsWRKY33 is a nuclear-targeting protein. The expression of MsWRKY33 gene was up-regulated by salinity (NaCl), drought (PEG) and cold temperature (4℃), indicating that MsWRKY33 gene may be involved in the regulation of environmental stress responses in alfalfa. The fragment encoding 10-239AA was inserted into pET-30α (+) to construct the expression vectors, and SDS-PAGE analysis revealed that the MsWRKY33 protein could be expressed in prokaryotic cells. The full length cDNA of MsWRKY33 was amplified from alfalfa RNA and the plant expression vector pBI121-MsWRKY33 was constructed based on the pBI121 vector. Transgenic plants were obtained through somatic embryogenesis by Agrobacterium tumefaciens-mediated transformation. The npt Ⅱ gene and vector sequence were tested by PCR in the genome of transgenic plants and indicated that the target gene had been transferred. The qRT-PCR testing showed that the MsWRKY33 gene was over expressed in transgenic plants. This study will lay a foundation for further study of the function of the WRKY transcription factor in stress-tolerance regulation in alfalfa.