[1] Yeats T H, Rose J K C. The formation and function of plant cuticles. Plant Physiology, 2003, 163: 5-20. [2] Riederer M, Mülle C. Biology of the Plant Cuticle[M]. Oxford, UK: Blackwell Publishing Ltd, 2006. [3] Mackova J, Vaskova M, Macek, et al . Plant response to drought stress simulated by ABA application: Changes in chemical composition of cuticular waxes. Environmental and Experimental Botany, 2013, 86: 70-75. [4] Samdur M Y, Manivel P, Jain V K, et al . Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Science, 2003, 43: 1294-1299. [5] Sanchez F J, Manzanares M, Andres E F, et al . Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. European Journal of Agronomy, 2001, 15: 57-70. [6] Zhang J Y, Broeckling C D, Blancaflor E B, et al . Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa ( Medicago sativa ). Plant Journal, 2005, 42: 689-707. [7] Koch K, Hartmann K D, Schreiber L, et al . Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environmental and Experimental Botany, 2006, 56: 1-9. [8] Zhang Z F, Rao L Q, Xiang Z X, et al . Epidermis wax content and drought resistance among different tall Fescue ( Festuca arundinacea Schreb.) varieties. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(7): 1417-1421. [9] Dodd R S, Poveda M M. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics and Ecology, 2003, 31: 1257-1270. [10] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame ( Sesamum indicum L.) plants exposed to water deficit. Journal of Plant Physiology, 2007, 164(9): 1134-1143. [11] Mazurek M A, Simoneit B R T. Molecular Markers in Environmental Geochemistry[M]. Washington: American Chemical Society, 1997: 92-108. [12] Poynter J, Eglinton G. Proceedings of the Ocean Drilling Program: Scientific Results Distal Bengal Fan[M]. Texas: Ocean Drilling Program, 1990: 155. [13] Bray E E, Evans E D. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 1961, 22(1): 2-15. [14] Kuhn T K, Krull E S, Bowater A, et al . The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry, 2010, 41(2): 88-95. [15] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. Gemmifera . New Phytoogoist, 1974, 73: 955-966. [16] Reed D W, Tukey H B Jr. Light intensity and temperature effects on epieutieular wax morphology and internal cuticle ultrastructure of carnation and Brussels sprouts leaf cuticles. Journal of American Horticultural Science, 1982, 107: 417-420. [17] Mansour A, Mohammadian, Jennifer R, et al . The impact of epicuticular wax on gas exchange and photo inhibition in Leucadendron lanigerum (Proteaceae). Acta Oecologica, 2007, 31: 93-101. [18] Reicosky D A, Hanover J W. Seasonal changes in leaf surface waxes of Picea pungens . American Journal of Botany, 1976, 63: 449-456. [19] Hietala T, Mozes N, Genet M J, et al . Surface lipids and their distribution on willow ( Salix ) leaves: a combined chemical, morphological and physiochemical study. Colloids and Surfaces B: Biointerfaces, 1997, 8: 205-215. [20] Zhou L Y, Jiang D G, Li J, et al . Effect of stresses on leaf cuticular wax accumulation and its relationship to express of OsGL1-Homologous genes in rice. Acta Agronomica Sinica, 2012, 38(6): 1115-1120. [21] Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Scientia Agriculture Sinica, 2014, 47(2): 252-261. [22] Sanchez F J, Manzanares M, De A E F, et al . Residual transpiration rate, epicuticular wax load and leaf color of pea plant sin drought conditions. In fluence on harvest index and canopy temperature. European Journal of Agronomy, 2001, 15(1): 57-70. [23] Hwang K T, Curtis L, Weller Susan L, et al . Changes in composition and thermal transition temperatures of grain sorghum wax during storage. Industrial Crops and Products, 2004, 19(2): 125-132. [24] Nabbefeld B, Grice K, Twitchett R J, et al . An integrated biomarker, isotopic and palaeo environmental study through the lake Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 2010, 291: 84-96. [25] Xia Z H, Xu B Q, Mugler I, et al . Climatic implication of hydrogen isotope ratios of terrigenous n-alkanes in lacutrine surface sediment of Tebetan Pleteau. Journal Lake Science, 2008, 20(6): 695-704. [26] Seki O, Nakatsuka T, Shibata H, et al . A compound-specific n-alkane δ 13 C and βD approach for assessing source and delivery processes of terrestrial organic matter within a forested watershed in northern Japan. Geochimica et Cosmochimica Acta, 2010, 74(2): 599-613. [27] Post-Beittenmiller D. Biochemistry and molecular biology of wax production in plants. Annual Review of Plant Physiology, Plant Molecular Biology, 1996, 47: 405-430. [28] Zhang J, Jia G D.Application of plant drived n-alkanes and their compound-specific hydrogen isotopic composition paleo environment research.Advance in Earth Science, 2009, 24(8): 874-881. [29] He C Y, Li D R. Studies of shade-endurance capacity of Oplisemnus undulatifolius . Pratacultural Science, 2013, 30(10): 1531-1534. [30] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic or ganisms as potential contributors to lacustrine sediments-II. Organic Geochemistry, 1987, 11: 513-527. [31] Jansen B, Nierop Klaas G J, Hageman Jos A, et al . The straight-chain lipid biomarker composition of plant species responsible for the dominant biomass production along two altitudinal transects in the Ecuadorian Andes. Organic Geochemistry, 2006, 37: 1514-1536. [32] Cui J W, Huang J H, Pu Y, et al . Composition of lipid compositions between plant leaves and overlying soil in Heshang Cave, Qingjiang, Hubei Province and its significance. Quaternary Sciences, 2008, 28(1): 35-42. [33] Tulloch A P. Chemistry of waxes of higher plants. In: KoIattiikudy P E. Chemistry and Biochemistry of Natural Waxes[M]. Amstermad: Elsevie, 1976: 236-287. [34] Wang Y T, Sun Y L, Wang M L, et al . Composition and ultrastructure variation of leaf culticular wax at different developing stage of Aegilops tauschii . Journal of Triticeae Crops, 2014, 34(11): 1516-1521. [35] Jenks M A, Tuttle H A, Eigenbrode S D, et al . Leaf epicuticular waxes of the eceriferum mutants vn Arabidopsis . Plant Physiology, 1995, 108(1): 369-377. [36] Sicre M A, Peltzer E T. Lipid geochemistry of remote aerosols from the southwestern Pacific Ocean sector. Atmospheric Environment, 2004, 38(11): 1615-1624. [8] 张志飞, 饶力群, 向佐湘, 等. 高羊茅叶片表皮蜡质含量与其抗旱性的关系. 西北植物学报, 2007, 27(7): 1417-1421. [20] 周玲艳, 姜大刚, 李静, 等. 逆境处理下水稻叶角质层蜡质积累及其与蜡质合成相关基因OsGL1表达的关系. 作物学报, 2012, 38(6): 1115-1120. [21] 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制. 中国农业科学, 2014, 47(2): 252-261. [25] 夏忠欢, 徐柏青, Mugler I, 等. 青藏高原湖泊表层沉积物中陆源正构烷烃氢同位素比值的气候意义. 湖泊科学, 2008, 20(6): 695-704. [28] 张杰, 贾国东. 植物正构烷烃及其单体氢同位素在古环境研究中的应用. 地球科学进展, 2009, 24(8): 874-881. [29] 贺彩艳, 李德荣. 求米草的耐荫性研究. 草业科学, 2013, 30(10): 1531-1534. [32] 崔景伟, 黄俊华, 蒲阳, 等. 湖北清江和尚洞洞顶植物叶片和土壤的类脂物对比及其意义. 第四纪研究, 2008, 28(1): 35-42. [34] 王艳婷, 孙瑜琳, 王美玲, 等. 节节麦不同生育期叶片蜡质组成和超微型态的变化. 麦类作物学报, 2014, 34(11): 1516-1521. |