[1] Jiang H, Bi Y F, Chen L X, et al . Physiological characteristics of alfalfa under dry-farming conditions. Acta Agrestia Sinica, 2012, 20(6): 1077-1080. [2] Yang X L, Zhu Y J. Advances of plant drought stress. Agricultural Engineering, 2012, 2(11): 44-45. [3] Qu T, Nan Z B. Research progress on responses and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinica, 2008, 17(2): 126-135. [4] Liu S S, Chen Y Y, Zhang D, et al . Isolation, identification, and biocontrol effects of Bacillus spp. from the rhizosphere of alfalfa. Acta Prataculturae Sinica, 2015, 24(9): 96-103. [5] Quan R L, Yu Y X. Effects of waterlogging on antioxidant and anaerobic respiratory enzymes in Medicago sativa varieties from southern and northern China. Acta Prataculturae Sinica, 2015, 24(5): 84-90. [6] Liu Y, Zhang C M, Xie X R, et al . Effect of drought stress on polyamine metabolism in the leaves and roots of alfalfa. Acta Prataculturae Sinica, 2012, 21(6): 102-107. [7] Kong J, Pei Z P, Du W, et al . Effects of AM fungi on the growth and drought resistance of alfalfa under water stress. Northern Horticulture, 2014, (9): 179-182. [8] Ren A T, Lu W H, Ma C H, et al . Effects of arbuscular mycorrhiza fungi on drought tolerance of Medicago sativa L. Xinjiang Agricultural Sciences, 2014, 51(9): 1677-1685. [9] Ren A T, Narkes W, Lu W H, et al . Effects of arbuscular mycorrhiza fungi on the dynamic characteristics of fine roots growth and biomass of alfalfa. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(12): 2535-2543. [10] Yang P, Zhang P, Li B, et al . Effects of nodules on dehydration response in alfalfa ( Medicago sativa L.). Environmental and Experimental Botany, 2011, 86(2): 29-34. [11] Zhang P, Yang P Z, Wang W D, et al . Study on physiological change of alfalfa with symbiotic rhizobium under drought stress. Acta Agrestia Sinica, 2013, 21(5): 938-944. [12] Yang P Z. Mechanism Involved in Drought/salt Tolerance Improvement in Alfalfa due to Symbiotic Interaction with Rhizobium[D]. Yangling: Northwest Agriculture and Forestry University, 2012. [13] Wang W D. Proteome Analysis on the Effect of Nodules on Alfalfa ( Medicago sativa L.) Dehydration Tolerance[D]. Yangling: Northwest Agriculture and Forestry University, 2013. [14] Verma S, Varma A, Rexer K H, et al . Piriformospora indica , gen. et sp. Nov., a new root-colonizing fungus. Mycologia, 1998, 90(5): 896-903. [15] Waller F, Achatz B, Bahruschat H, et al . The endophytie fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. The Proceedings of the National Academy of Sciences of United States of America, 2005, 102(38): 13386-13391. [16] Prasad R, Pham G H, Kumari R, et al . Sebacinaceae: Culturable mycorrhiza-like endphytic fungi and their interaction with non-transformed and roots. In: Declerck S. Root Organ Culture of Mycorrhizal Fungi[M]. Germany: Springer-Verlag, 2005: 293-312. [17] Kumari R, Kishan H, Bhoon Y K, et al . Colonization of cruciferous planta by Piriformospora indica . Current Science, 2003, 85(12): 1672-1674. [18] Rai M, Acharya D, Singh A, et al . Positive growth responses of the medicinal plants Spilanthes calva and Withania somnlfera to inoculation by Piriformospora indica in a field trial. Mycorhiza, 2001, 11(3): 123-128. [19] Fakhro A, Andrade-Linares D R, Von Barren S, et al . Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 2010, 20(3): 191-200. [20] Barazani O, Benderoth M, Groten K, et al . Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuate. Oecologia, 2005, 146(2): 234-243. [21] Serfling A, Wirsel S G, Lind V, et al . Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology, 2007, 97(4): 523-531. [22] Stein E, Molitor A, Kogel K H, et al . Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPRl. Plant and Cell Physiology, 2008, 49: 1747-1751. [23] Kumar M, Yadav V, Tuteja N, et al . Antioxidant enzyme activities in maize plants colonized with Piriformospora indica . Microbiology, 2009, 155(3): 780-790. [24] Wang F R, Mao K K, Li G J, et al . Piriformospora indica and its related species Sebacina vermifera promote growth and development and phosphorus nutrition in tomato. Journal of Zhejiang University (Agriculture & Life Sciences), 2011, 37(1): 61-68. [25] Sun C. Disease Resistence, Drowth Promotion and Stress Tolerance in Chinese Cabbage Conferred by Piriformospora indica and the Prelinary Study of Mechanisms[D]. Hangzhou: Zhejiang University, 2010. [26] Liu J H, Wang T, Gao Q K. Influence of Piriformospora indica on host plant selection by aphid Lipaphis erysimi (Kaltenbach). Biotechnology Bulletin, 2014, (12): 133-140. [27] Ghahfarokhi R M, Goltapeh M E. Potential of the root endophytic fungus Piriformospora indica ; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro. Journal of Agricultural Technology, 2010, 6(1): 11-18. [28] Baltruschat H, Fodor J, Harrach B D, et al . Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 2008, 180(2): 501-510. [29] Sherameti I, Tripathi S, Varma A, et al . The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. The American Phytopathological Society, 2008, 21(6): 799-807. [30] Sun C, Johnsona J M, Cai D G, et al . Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 2010, 167(12): 1009-1017. [31] Wu M Y, Hao R C, Zhang W Y, et al . Preliminary study on drought tolerance of alfalfa seedling induced by Piriformospora indica fungi. Acta Agrestia Sinica, 2013, 21(6): 1218-1221. [32] Cang J, Zhang H J. Experimental Course of Plant Physiology[M]. Beijing: Higher Education Press, 2013. [33] Elstner E, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchoride: a simple assay for superoxide dismutase. Analytical Biochemistry, 1976, 70(2): 616-620. [34] Zhang W Y, Hao R C, Wang Y Y, et al . Conferring drought tolerance in maize seeding by endophytic fungus Piriformospora indica . Journal of Maize Sciences, 2013, 21(5): 127-130. [35] Zhang W Y, Wang Y Y, Hao R C, et al . Endophytic fungus Piriformospora indica promotes growth and confers drought tolerance in sesame ( Sesamum indicum L.). Chinese Journal of Oil Crop Sciences, 2014, 36(1): 71-75. [36] Zhao J M, Zhou H, Wang X Y. Effects of water stress on physiological and biochemical process of alfalfa varieties. Acta Agrestia Sinica, 2006, 13(3): 184-189. [37] Han R H. Study on Adaptive Mechanisms of Alfalfa ( Medicago sativa ) in Drought Stress at Seedling Stage[D]. Beijing: Beijing Forestry University, 2006. [38] ZgallaH, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants. Journal of Interactive Plant Biology, 2006, 48(6): 679-685. [39] Varma A, Verma S, Sudha A, et al . Piriformospora indica , acultivable plant growth promoting root endophyte. Applied and Environmental Microbiology, 1999, 65(6): 2741-2744. [40] Hui F Q, Peng B, Lou B G, et al . Preliminary study on effects and mechanisms of salt and drought resistance and heavy metals in Nicotiana tobacum conferred by Piriformospora indica . Journal of Agricultural Biotechnology, 2014, 22(2): 168-176. [41] Li L, Wu H Q, Ma Z Y, et al . Piriformospora indica promotes growth and confers salt tolerance in Medicago truncatula . Microbiology China, 2015, 42(8): 1492-1500. [1] 姜华, 毕玉芬, 陈连仙, 等. 干旱条件下紫花苜蓿生理特性的研究. 草地学报, 2012, 20(6): 1077-1080. [2] 杨雪莲, 朱友娟. 植物干旱胁迫研究进展. 农业工程, 2012, 2(11): 44-45. [3] 曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008, 17(2): 126-135. [4] 刘莎莎, 程园园, 张丹, 等. 两株紫花苜蓿根际芽孢杆菌的筛选及生防效果研究. 草业学报, 2015, 24(9): 96-103. [5] 全瑞兰, 玉永雄. 淹水对紫花苜蓿南北方品种抗氧化酶和无氧呼吸酶的影响. 草业学报, 2015, 24(5): 84-90. [6] 刘义, 张春梅, 谢晓蓉, 等. 干旱胁迫对紫花苜蓿叶片和根系多胺代谢的影响. 草业学报, 2012, 21(6): 102-107. [7] 孔静, 裴宗平, 杜旼, 等. 水分胁迫下AM真菌对紫花苜蓿生长及抗旱性的影响. 北方园艺, 2014, (9): 179-182. [8] 任爱天, 鲁为华, 马春晖, 等. 接种AM 真菌对紫花苜蓿抗旱性的影响. 新疆农业科学, 2014, 51(9): 1677-1685. [9] 任爱天, 娜丽克斯·外里, 鲁为华, 等. AM真菌对紫花苜蓿细根生长及其生物量动态特征的影响. 西北植物学报, 2014, 34(12): 2535-2543. [11] 张攀, 杨培志, 王卫栋, 等. 干旱胁迫下根瘤菌共生紫花苜蓿抗旱生理变化研究. 草地学报, 2013, 21(5): 938-944. [12] 杨培志. 紫花苜蓿根瘤菌共生对干旱及盐胁迫的响应机制研究[D]. 杨凌:西北农林科技大学, 2012. [13] 王卫栋. 共生根瘤菌提高紫花苜蓿抗旱能力的蛋白组分析[D]. 杨凌:西北农林科技大学, 2013. [24] 王凤让, 毛克克, 李国钧, 等. 印度梨形孢及其近似种 Sebacina vermifera 促进番茄生长发育及磷吸收. 浙江大学学报(农业与生命科学版), 2011, 37(1): 61-68. [25] 孙超. 印度梨形孢诱导小白菜抗病、促生、抗逆的作用及其机理的初步研究[D]. 杭州:浙江大学, 2010. [26] 刘金华, 王婷, 高其康. 印度梨形孢定殖油菜对萝卜蚜选择油菜寄主的影响. 生物技术通报, 2014, 12: 133-140. [31] 武美燕, 蒿若超, 张文英, 等. 印度梨形孢诱导紫花苜蓿提高抗旱性研究初报. 草地学报, 2013, 21(6): 1218-1221. [32] 苍晶, 赵会杰. 植物生理学实验教程[M]. 北京:高等教育出版社, 2013. [34] 张文英, 蒿若超, 汪嫒嫒, 等. 内生真菌印度梨形孢诱导提高玉米苗期抗旱性研究初探.玉米科学, 2013, 21(5): 127-130. [35] 张文英, 汪嫒嫒, 蒿若超, 等. 印度梨形孢真菌促进芝麻生长并提高芝麻抗旱性. 中国油料作物学报, 2014, 36(1): 71-75. [36] 赵金梅, 周禾, 王秀艳. 水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系.草地学报, 2006, 13(3): 184-189. [37] 韩瑞宏. 苗期紫花苜蓿( Medicago sativa )对干旱胁迫的适应机制研究[D]. 北京:北京林业大学, 2006. [40] 惠非琼, 彭兵, 楼兵干, 等. 印度梨形孢通过促进渗透调节物质的合成和诱导抗逆相关基因的表达提高烟草耐盐性. 农业生物技术学报, 2014, 22(2): 168-176. [41] 李亮, 武洪庆, 马朝阳, 等. 印度梨形孢促进蒺藜苜蓿生长及其提高耐盐性研究. 微生物学通报, 2015, 42(8): 1492-1500. |