[1] Dai C, Kang M Y, Ji W Y, et al . Responses of belowground biomass and biomass allocation to environmental factors in central grassland of Inner Mongolia. Acta Agrestla Sinica, 2012, 20(2): 268-274. [2] Li K H, Wang W L, Hu Y K. Relationships between belowground biomass of alpine grassland and environmental factors along an altitude gradient. Chinese Journal of Applied Ecology, 2008, 19(11): 2364-2368. [3] Hu Z M, Fan J W, Zhong H P, et al . Progress on grassland underground biomass researches in China. Chinese Journal of Ecology, 2005, 24(9): 1095-1101. [4] Chai X, Liang C Z, Liang M W, et al . Seasonal dynamics of belowground biomass and productivity and potential of carbon sequestration in meadow steppe and typical steppe, in Inner Mongolia, China. Acta Ecologica Sinica, 2014, 34(19): 5530-5540. [5] Huang D Q, Yu L, Zhang Y S, et al . Belowground biomass and its relationship to environmental factors of natural grassland on the northern slopes of the Qilian Mountains. Acta Prataculturae Sinica, 2011, 20(5): 1-10. [6] Mu S J, Li J L, Yang H F, et al . Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15. [7] Hui D F, Jackson R B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytologist, 2006, 169(1): 85-93. [8] Yang X J, Huang M, Wang J B, et al . Belowground biomass in Tibetan grasslands and its environmental control factors. Acta Ecologica Sinica, 2013, 33(7): 2032-2042. [9] Jin Y X, Xu B, Yang X C, et al . Belowground biomass and features of environmental factors in the degree of grassland desertification. Acta Prataculturae Sinica, 2013, 22(5): 44-51. [10] Yu W T, Yu Y Q. Advances in the research of underground biomass. Chinese Journal of Applied Ecology, 2001, 12(6): 927-932. [11] Yan Y, Zhang J G, Zang J H, et al . The belowground biomass in alpine grassland in Nakchu Prefecture of Tibet. Acta Ecologica Sinica, 2005, 25(11): 2818-2823. [12] Wang M, Su Y Z, Yang R, et al . Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River, Gansu Province, China. Chinese Journal of Plant Ecology, 2013, 37(3): 209-219. [13] Chen J J, Yi S H, Ren S L, et al . Retrieval of fractional vegetation cover of alpline grassland and the efficiency of remote sensing retrieval in the upper of Shule River Basin. Pratacultural Science, 2014, 30(1): 56-65. [14] Li C, Xiao J D, Cao Z Z, et al . Application of MODIS data in remote sensing estimation of prairie biomass in different seasons. Arid Zone Research, 2007, 24(3): 386-391. [15] Ma W H, Fang J Y. The relationship between species richness and productivity in four typical grasslands of northern China. Biodiversity Science, 2006, 14(1): 21-28. [16] Men L H, Sheng J D, Jia H T, et al . Spatial distribution and influencing factors of temperate desert grassland biomass in northern Xinjiang. Acta Ecologica Sinica, 2013, 21(5): 861-868. [17] Hou Z J, Zhao C Z, Dong X G, et al . Responses of spatial pattern of aboveground biomass of natural grassland to terrain at different scales in northern slope of Qilian Mountains. Chinese Journal of Ecology, 2014, 33(1): 10-15. [18] Zhang G L, Xu X L, Zhou C P, et al . Responses of vegetation changes to climatic variations in Hulun Buir Grassland in past 30 years. Acta Geographica Sinica, 2011, 66(1): 47-58. [19] Zhang R, Liu P X, Zhang K X. Spatio-temporal characteristics of potential climate productivity of grassland and Its responses to climate change in Xinjiang, China. Journal of Desert Research, 2012, 32(1): 181-187. [20] Wang J, Li B L, Yu W L. Analysis of vegetation trend and their causes during recent 30 years in Inner Mongolia Autonomous Region. Journal of Arid Land Resources and Environment, 2012, 26(2): 132-137. [21] Li X G. Based on the MODIS NDVI Analysis of the Vegetation Cover Change and its Driving Factors in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2014: 20-21. [22] Liao G F, Jia Y L. Rangeland Resources of China[M]. Beijing: Science and Technology of China Press, 1996. [23] Chen K S, Wu T D, Tsang L, et al . Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. Geoscience and Remote Sensing, IEEE Transaction, 2003, 41(1): 90-101. [24] Ma W H, Yang Y H, He J S, et al . The relationship between the temperate grassland biomass and its environmental factors. Science in China, 2008, 38(1): 84-92. [25] Cao W X, Xu C L, Zhang D G, et al . Ecological responses of soil bulk density and water content to different non-grazing patterns in alpine rhododendron shrubland. Acta Prataculturae Sinica, 2011, 20(3): 28-35. [26] Lian G, Guo X D, Fu B J, et al . Spatial variability of bulk density and soil water in a small catchment of the Loess Plateau. Acta Ecologica Sinica, 2006, 26(3): 647-654. [27] Zhang C H, Wang M J, Li X H, et al . The characteristics of temporal and spatial distribution of climate dry-wet conditions over Inner Mongolia in recent 30 years. Journal of Arid Land Resources and Environment, 2011, 25(8): 70-75. [28] Qu C P, Guan D X, Wang A Z, et al . Comparison of grassland biomass estimation models based on MODIS data. Chinese Journal of Ecology, 2008, 27(11): 2028-2032. [29] Wang J W, Chen G. Vegetation index and biomass estimation for grassland. Journal of Yunnan Agricultural University, 2006, 21(3): 372-375. [30] Lu H, Cong J, Liu X, et al . Plant diversity patterns along altitudinal gradients in alpine meadows in the Three River Headwater Region, China. Acta Prataculturae Sinica, 2015, 24(7): 197-204. [31] Han B, Fan J W, Zhong H P. Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology, 2006, 30(4): 553-562. [1] 戴诚, 康慕谊, 纪文瑶, 等.内蒙古中部草原地下生物量与生物量分配对环境因子的响应关系. 草地学报, 2012, 20(2): 268- 274. [2] 李凯辉, 王万林, 胡玉昆, 等. 不同海拔梯度高寒草地地下生物量与环境因子的关系. 应用生态学报, 2008, 19(11): 2364-2368. [3] 胡中民, 樊江文, 钟华平, 等. 中国草地地下生物量研究进展. 生态学杂志, 2005, 24(9): 1095-1101. [4] 柴曦, 梁存柱, 梁茂伟, 等. 内蒙古草甸草原与典型草原地下生物量与生产力季节动态及其碳库潜力. 生态学报, 2014, 34(19): 5530-5540. [5] 黄德青, 于兰, 张耀生, 等. 祁连山北坡天然草地地下生物量及其与环境因子的关系. 草业学报, 2011, 20(5): 1-10. [6] 穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10 年NPP时空变化及其与气候的关系. 草业学报, 2013, 22(3): 6-15. [8] 杨秀静, 黄玫, 王军邦, 等. 青藏高原草地地下生物量与环境因子的关系. 生态学报, 2013, 33(7): 2032-2042. [9] 金云翔, 徐斌, 杨秀春, 等. 不同沙化程度草原地下生物量及其环境因素特征. 草业学报, 2013, 22(5): 44-51. [10] 宇万太, 于永强. 植物地下生物量研究进展. 应用生态学报, 2001, 12(6): 927-932. [11] 鄢燕, 张建国, 张锦华, 等. 西藏那曲地区高寒草地地下生物量. 生态学报, 2005, 25(11): 2818-2823. [12] 王敏, 苏永中, 杨荣, 等. 黑河中游荒漠草地地上和地下生物量的分配格局. 植物生态学报, 2013, 37(3): 209-219. [13] 陈建军, 宜树华, 任世龙, 等. 疏勒河上游高寒草地植被盖度反演及精度评价. 草业科学, 2014, 30(1): 56-65. [14] 李聪, 肖继东, 曹占洲, 等. 应用MODIS数据估算草地生物量. 干旱区研究, 2007, 24(3): 386-391. [15] 马文红, 方精云. 中国北方典型草地物种丰富度与生产力的关系. 生物多样性, 2006, 14(1): 21-28. [16] 门学慧, 盛建东, 贾宏涛, 等. 北疆温性荒漠类草地生物量空间分布及影响因素. 草地学报, 2013, 21(5): 861-868. [17] 侯兆疆, 赵成章, 董小刚, 等. 祁连山北坡天然草地不同尺度地上生物量空间格局对地形的响应. 生态学杂志, 2014, 33(1): 10-15. [18] 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应. 地理学报, 2011, 66(1): 47-58. [19] 张锐, 刘普幸, 张克新. 新疆草地气候生产潜力变化特征及对气候响应的预测研究. 中国沙漠, 2012, 32(1): 181-187. [20] 王娟, 李宝林, 余万里. 近30年内蒙古自治区植被变化趋势及影响因素分析. 干旱区资源与环境, 2012, 26(2): 132-137. [21] 李晓光. 基于MODIS-NDVI的内蒙古植被覆盖变化及其驱动因子分析[D]. 呼和浩特:内蒙古大学, 2014: 20-21. [22] 廖国藩, 贾幼铃. 中国草地资源[M]. 北京:中国科学技术出版社, 1996. [24] 马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学, 2008, 38(1): 84-92. [25] 曹文侠, 徐长林, 张德罡, 等. 杜鹃灌丛草地地下生物量与水分特征对不同休牧模式的响应. 草业学报, 2011, 20(3): 28-35. [26] 连纲, 郭旭东, 傅伯杰, 等. 黄土高原小流域土壤容重及水分空间变异特征. 生态学报, 2006, 26(3): 647-654. [27] 张存厚, 王明玖, 李兴华, 等. 近30年来内蒙古地区气候干湿状况时空分布特征. 干旱区资源与环境, 2011, 25(8): 70-75. [28] 渠翠平, 关德新, 王安志, 等. 基于MODIS数据的草地生物量估算模型比较. 生态学杂志, 2008, 27(11): 2028-2032. [29] 王建伟, 陈功. 草地植被指数及生物量的遥感估测. 云南农业大学学报, 2006, 21(3): 372-375. [30] 卢慧, 丛静, 刘晓, 等. 三江源区高寒草甸植物多样性的海拔分布格局. 草业学报, 2015, 24(7): 197-204. [31] 韩彬, 樊江文, 钟华平. 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 2006, 30(4): 553-562. |