草业学报 ›› 2016, Vol. 25 ›› Issue (11): 149-159.DOI: 10.11686/cyxb2016025
王锁民1,崔彦农1,刘金祥2,夏曾润1
收稿日期:
2016-01-19
出版日期:
2016-11-20
发布日期:
2016-11-20
作者简介:
王锁民(1965-),男,甘肃宁县人,教授,博士。E-mail:smwang@lzu.edu.cn
基金资助:
WANG Suo-Min1, CUI Yan-Nong1, LIU Jin-Xiang2, XIA Zeng-Run1
Received:
2016-01-19
Online:
2016-11-20
Published:
2016-11-20
摘要: 海草是分布于全球各地浅海中的重要沉水被子植物,具有极高的应用价值;海草与周围环境形成一个独特的生态系统——海草场生态系统,是生物圈中最具生产力的水生生态系统之一,且强大的吸收和固碳能力使其成为全球最大的碳库之一;海草场具有多种重要的生态服务功能;被广泛视为是理想的“生态哨兵”来衡量近海岸生态系统健康状况。如今由于自然因素和人为破坏活动的双重干扰,全球海草种的数量和海草场的覆盖面积正在急剧减少,海草生存状况面临严峻的考验,约14%的海草种处于灭绝的边缘,1/3的海草场彻底消失。目前,海草监测工程和以生境恢复与人工移植为主的海草保护恢复工程已经开始实施,并取得初步成效,对今后全球范围内海草保护恢复工作具有重要指导作用,但该工程还仅仅处于起步阶段,取得更多技术理论上的突破和政策上的支持才能实现挽救濒危海草种及缓解海草场生态系统破坏现状的目标。本文通过对全球海草及海草场生态系统研究成果的总结,阐述了海草和海草场对全球生物圈的重要性以及面临的严峻生存压力,以期提高公众对海草的认识,并唤起人们保护海草的意识。
王锁民,崔彦农,刘金祥,夏曾润. 海草及海草场生态系统研究进展[J]. 草业学报, 2016, 25(11): 149-159.
WANG Suo-Min, CUI Yan-Nong, LIU Jin-Xiang, XIA Zeng-Run. Research progress on seagrass and seagrass ecosystems[J]. Acta Prataculturae Sinica, 2016, 25(11): 149-159.
[1] Duarte C M. Seagrass deep limit. Aquatic Botany, 1991, 40: 363-377. [2] Dennison W C, Batiuk R A. Assessing water quality with submersed aquatic vegetation. Bioscience, 1993, 43(2): 86-94. [3] Hemminga M A, Duarte C M. Seagrass Ecology [M]. Cambridgeshire: Cambridge University Press, 2000. [4] Olesen B. Reproduction in Danish eelgrass (Zostera marina L.)stands: size-dependence and biomass partitioning. Aquatic Botany, 1999, 65(1/4): 209-219. [5] Duarte C M, Uri J S, Agawin N S R, et al. Flowering frequency of philippine seagrasses. Botanica Marina, 1997, 40(6): 497-500. [6] Yang Z D. The geographical distribution of sea-grasses. Transactions of Oceanology and Limnology, 1979, (2): 41-46. [7] Fonseca M S. Sediment stabilization by Halophila decipiens in comparison to other seagrasses. Estuarine, Coastal and Shelf Science, 1989, 29(5): 501-507. [8] Les D H, Cleland M A, Waycott M. Phylogenetic studies in the Alismatidae, II: Evolution of the marine angiosperms (Seagrasses) and hydrophily. Systematic Botany, 1997, 22(3): 443-463. [9] Bos A R, Bouma T J, de Kort G L J, et al. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuarine, Coastal and Shelf Science, 2007, 74(1/2): 344-348. [10] Barbier E B, Hacker S D, Kennedy C, et al. The value of estuarine and coastal ecosystem services. Ecological Monographs, 2011, 81(2): 169-193. [11] García-Marín P, Caba?o S, Hernández I, et al. Multi-metric index based on the seagrass Zostera noltii (ZoNI) for ecological quality assessment of coastal and estuarine systems in SW Iberian Peninsula. Marine Pollution Bulletin, 2013, 68(1/2): 46-54. [12] Thomson J A, Burkholder D A, Heithaus M R, et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Global Change Biology, 2015, 21(4): 1463-1474. [13] Orth R J, Carruthers T J B, Dennison W C, et al. A global crisis for seagrass ecosystems. Bioscience, 2006, 56(12): 987-996. [14] Yang Z D. The ecological studies on sea-grasses of China. Marine Sciences, 1982, (2): 34-37. [15] Phillips R C, Meneze G. Seagrass [M]. Washington DC: Smithsonian Institution Press, 1988. [16] Zheng F Y, Qiu G L, Fan H Q, et al. Diversity, distribution and conservation of Chinese seagrass species. Biodiversity Science, 2013, 21(5): 517-526. [17] Short F T, Carruthers T J B, Dennison W C, et al. Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 2007, 350(3): 3-20. [18] Short F T, Polidoro B, Livingstone S R, et al. Extinction risk assessment of the world’s seagrass species. Biological Conservation, 2011, 144(7): 1961-1971. [19] Ekl?f J S, de la Torre-Castro M, Gullstr?m M, et al. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management. Estuarine, Coastal and Shelf Science, 2008, 79(4): 569-580. [20] Rengasamy R R K, Radjassearin A, Perumal A. Seagrasses as potential source of medicinal food ingredients: Nutritional analysis and multivariate approach. Biomedicine and Preventive Nutrition, 2013, 3(4): 375-380. [21] Fan H Q, Zheng X W. Review on research of seagrass photosynthesis. Guangxi Sciences, 2007, 14(2): 180-192. [22] Li Y G. The artificial bone made by seagrasses. Chinese Medical Device, 1992, 18: 8. [23] Charpy-Roubaud C, Sournia A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytbenthic primary production in the oceans. Marine Microbial Food Webs, 1990, 4(1): 31-57. [24] Duarte C M, Middelburg J J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences and Disscusions, 2005, 2(1): 1-8. [25] Duarte C M, Chiscano C L. Seagrass biomass and production: A reassessment. Aquatic Botany, 1999, 65(1/4): 159-174. [26] Qiu G L, Lin X Z, Li Z S, et al. Seagrass ecosystems: Contributions to and mechanisms of carbon sequestration. Chinese Journal of Applied Ecology, 2014, 25(6): 1825-1832. [27] Erftemeijer P L A, Osinga R, Mars A E. Primary production of seagrass beds in South Sulawesi (Indonesia): a comparison of habitats, methods and species. Aquatic Botany, 1993, 46(1): 67-90. [28] Larkum A W D, Orth R J, Duarte C M. Seagrasses: biology, ecology and conservation. Marine Ecology, 2006, 27(4): 431-432. [29] Moncreiff C A, Sullivan M J, Daehnick A E. Primary production dynamics in seagrass beds of Mississippi sound: the contributions of seagrass, epiphytic algae, sand micro flora, and phytoplankton. Marine Ecology Progress Series, 1992, 87(1): 161-171. [30] Pollard P C, Kogure K. The role of epiphytic and epibenthic algal productivity in a tropical seagrass, Syringodium isoetifolium (Aschers.) Dandy, community. Australian Journal of Marine and Freshwater Research, 1993, 44(1): 141-154. [31] Li W T, Zhang X M. The ecological functions of seagrass meadows. Periodical of Ocean University of China, 2009, 39(5): 933-939. [32] Bouillon S, Connolly R M, Lee S Y. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. Journal of Sea Research, 2008, 59(1/2): 44-58. [33] Duarte C M, Cebrián J. The fate of marine autotrophic production. Limnology and Oceanography, 1996, 41(8): 1758-1766. [34] Orem W H, Kendall C H, Lerch H E, et al. Geochemistry of Florida Bay sediments: Nutrient history at five sites in eastern and central Florida Bay. Journal of Coastal Research, 1999, 15(4): 1055-1071. [35] Serrano O, Meteo M A, Due?as-Bohórquez A, et al. The Posidonia oceanica marine sedimentary record: A holocene archive of heavy metal pollution. Science of the Total Environment, 2011, 409(22): 4831-4840. [36] Fourqurean J W, Duarte C M, Kennedy H, et al. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5(7): 505-509. [37] Dorenbosch M, van Riel M C, Nagelkerken I, et al. The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science, 2004, 60(1): 37-48. [38] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves. Science, 2007, 317: 41-42. [39] Heck K L, Carruthers T J B, Duarte C M, et al. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems, 2008, 11(7): 1198-1210. [40] Duarte C M, Borum J, Short F T, et al. Seagrass Ecosystems: Their Global Status and Prospects [M]. Cambridgeshire: Cambridge University Press, 2008. [41] de la Torre-Castro M, R?nnb?ck P. Links between humans and seagrasses-an example from tropical East Africa. Ocean and Coastal Management, 2004, 47(7/8): 361-387. [42] Unsworth R K F, Cullen L C. Recognising the necessity for Indo-Pacific seagrass conservation. Conservation Letters, 2010, 3(3): 63-73. [43] Green E P, Short F T. World atlas of seagrasses. Botanica Marina, 2003, 47(3): 259-260. [44] Beck M W, Heck K L, Able K W, et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience, 2001, 51(8): 633-641. [45] Heck K L, Hays C, Orth R J. A critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series, 2003, 253(1): 123-136. [46] Nagelkerken I, Sheaves M, Baker R, et al. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries, 2015, 16(2): 362-371. [47] Cardoso P G, Pardal M A, Lilleb? A I, et al. Dynamic changes in seagrass assemblages under eutrophication and implications for recovery. Journal of Experimental Marine Biology and Ecology, 2004, 302(2): 233-248. [48] Burkholder J M, Tomasko D A, Touchette B W. Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 46-72. [49] Fourqurean J W, Cai Y. Arsenic and phosphorus in seagrass leaves from the Gulf of Mexico. Aquatic Botany, 2001, 71(4): 247-258. [50] Huang D J, Huang X P. Researches on seagrass pollution ecology and their prospects. Transactions of Oceanology and Limnology, 2007, 7(B12): 182-188. [51] Foden J, Brazier D P. Angiosperms (seagrass) within the EU water framework directive: A UK perspective. Marine Pollution Bulletin, 2007, 55(1/6): 181-195. [52] Dolch T, Buschbaum C, Reise K. Persisting intertidal seagrass beds in the northern Wadden Sea since 1930s. Journal of Sea Research, 2013, 82(5): 134-141. [53] Shi Q C. EU Water Framework Directive and its implementation. China Water Resources, 2005, 22: 65-66. [54] Mace G M, Collar N J, Gaston K J, et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology, 2008, 22(6): 1424-1442. [55] Waycott M, Duarte C M, Carruthers T J B, et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 2009, 106(30): 12377-12381. [56] Greening H S, Janicki A. Toward reversal of eutrophic conditions in a subtropical estuary: Water quality and seagrass response to nitrogen loading reductions in Tampa Bay, Florida, USA. Environmental Management, 2006, 38(2): 163-178. [57] Cardoso P G, Brand?o A, Pardal M A, et al. Resilience of Hydrobia ulvae populations to anthropogenic and natural disturbances. Marine Ecology Progress Series, 2005, 289(1): 191-199. [58] Barillé L, Robin M, Harin N, et al. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquatic Botany, 2010, 92(3): 185-194. [59] Valiela I, Bowen J L, York J K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience, 2001, 51(10): 807-815. [60] Achard F, Eva H D, Stibig H J, et al. Determination of deforestation rates of the World’s humid tropical forests. Science, 2002, 297: 999-1002. [61] Nelleman C, Corcoran E, Duarte C M, et al. Blue carbon: The role of healthy oceans in binding carbon. Revista Brasileira De Ciência Do Solo, 2009, 32(2): 589-598. [62] Fonseca M S, Kenworthy W J, Whitfield P E. Temporal dynamics of seagrass landscapes: A preliminary comparison of chronic and extreme disturbance events. Biologia Marina Mediterranean, 2000, 7: 373-376. [63] Preen A R, Marsh H. Response of dugong to large-scale loss of seagrass from Hervey. Wildlife Research, 1995, 22(4): 507-519. [64] Hegerl G C, Hanlon H, Beierkuhnlein C. Climate science: Elusive extremes. Nature Geoscience, 2011, 4(3): 142-143. [65] Short F T, Burdick D M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries, 1996, 19(3): 730-739. [66] Seddon S, Connolly R M, Edyvane K S. Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquatic Botany, 2000, 66(4): 297-310. [67] Marba N, Duarte C M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 2010, 16(8): 2366-2375. [68] Moore K A, Shields E C, Parrish D B. Impacts of varying estuarine temperature and light conditions on Zostera marina (eelgrass) and its interactions with Ruppia maritima (widgeongrass). Estuaries and Coasts, 2014, 37(1): 20-30. [69] Li S, Fan H Q, Qiu G L, et al. Review on research of seagrass beds restoration. Acta Ecologica Sinica, 2010, 30(9): 2443-2453. [70] Xu Z Z, Luo Y, Zhu A J, et al. Degradation and restoration of seagrass ecosystem research progress. Chinese Journal of Ecology, 2009, 28(12): 2613-2618. [71] Collier C J, Waycott M, McKenzie L J. Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecological Indicators, 2012, 23(4): 211-219. [72] Ralph P J, Durako M J, Enriquez S, et al. Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 176-193. [73] Ochieng C A, Short F T, Walker D I. Photosynthetic and morphological responses of eelgrass (Zostera marina L.) to a gradient of light conditions. Journal of Experimental Marine Biology and Ecology, 2010, 382(2): 117-124. [74] Duarte C M. The future of seagrass meadows. Environmental Conservation, 2002, 29(2): 192-206. [75] Multer H G. Growth rate, ultrastructure and sediment contribution of Halimeda incrassate and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W. I. Coral Reefs, 1988, 6(3): 179-186. [76] Williams S L. Experimental studies of Caribbean seagrass bed development. Ecological Monographs, 1990, 60(4): 449-469. [77] Davis B C, Fourqurean J W. Competition between the tropical alga, Halimeda incrassate and the seagrass, Thalassia testudinum. Aquatic Botany, 2001, 71(3): 217-232. [78] Irlandi E A, Orlando B A, Biber P D. Drift algae-epiphyte-seagrass interactions in a subtropical Thalassia testudinum meadow. Marine Ecology Progress Series, 2004, 279(1): 81-91. [79] Brun F G, Olivé I, Malta E, et al. Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Marine Ecology Progress Series, 2008, 365(1): 67-75. [80] Villazán B, Brun F G, Jiménez-Ramos R, et al. Interaction between ammonium and phosphate uptake rate in the seagrass Zostera noltii. Marine Ecology Progress Series, 2013, 488: 133-143. [81] Sousa-Dias A, Melo R A. Long-term abundance patterns of macroalgae in relation to environmental variables in the Tagus Estuary (Portugal). Estuarine, Coastal and Shelf Science, 2008, 76(1): 21-28. [82] Hauxwell J, Cebrian J, Valiela I. Eelgrass (Zostera marina) loss in temperate estuaries: Relationship to land derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series, 2003, 247: 59-73. [83] Nayar S, Collings G J, Miller D J, et al. Uptake and resource allocation of ammonium and nitrate in temperate seagrasses Posidonia and Amphibolis. Marine Pollution Bulletin, 2010, 60(9): 1502-1511. [84] Bryars S, Collings G J, Miller D J. Nutrient exposure causes epiphytic changes and coincident declines in two temperate Australian seagrasses. Marine Ecology Progress Series, 2011, 441: 89-103. [85] Han Q Y, Liu D Y. Macroalgae blooms and their effects seagrass ecosystems. Journal of Ocean University of China, 2014, 13(5): 791-798. [86] Ling J, Dong J D, Zhang Y Y, et al. Research on the status and prospects of N2-fixation microorganisms in seagrass beds ecosystem. Journal of Biology, 2012, 29(3): 62-65. [87] Touchette B W. The biology and ecology of seagrasses. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 1-2. [88] Fertig B, Kennish M J, Sakowicz G P. Changing eelgrass (Zostera marina L.)characteristics in a highly eutrophic temperate coastal lagoon. Aquatic Botany, 2013, 104(1): 70-79. [89] Nielsen L W, Dahll?f I. Direct and indirect effects of the herbicides Glyphosate, Bentazone and MCPA on eelgrass (Zostera marina). Aquatic Toxicology, 2007, 82(1): 47-54. [90] Han Q Y, Shi P. Progress in the study of seagrass ecology. Acta Ecologica Sinica, 2008, 28(11): 5561-5570. [91] Sandoval-Gil J M, Marín-Guirao L, Ruiz J M. The effect of salinity increase on the photosynthesis, growth and survival of the Mediterranean seagrass Cymodocea nodosa. Estuarine, Coastal and Shelf Science, 2012, 115(2): 260-271. [92] Mcdonald J I, Coupland G T, Kendrick G A. Underwater video as a monitoring tool to detect change in seagrass cover. Journal of Environmental Management, 2006, 80(2): 148-155. [93] Lenzi M, Palmieri R, Porrello S. Restoration of the eutrophic Orbetello lagoon (Tyrrhenian Sea, Italy): Water quality management. Marine Pollution Bulletin, 2003, 46(12): 1540-1548. [94] Cunha A H, Santos R P, Gaspar A P, et al. Seagrass landscape-scale changes in response to disturbance created by the dynamics of barrier-islands: A case study from Ria Formosa (Southern Portugal). Estuarine, Coastal and Shelf Science, 2005, 64(4): 636-644. [95] van Katwijk M M, Bos A R, de Jonge V N, et al. Guidelines for seagrass restoration: Importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin, 2009, 58(2): 179-188. [96] Nayar S, Collings G J, Pfennig P, et al. Managing nitrogen inputs into seagrass meadows near a coastal city: Flow-on from research to environmental improvement plans. Marine Pollution Bulletin, 2012, 64(5): 932-940. [97] Bos A R, van Katwijk M M. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Marine Ecology Progress Series, 2007, 336(1): 121-129. [98] Fonseca M S, Kenworthy W J, Thayer G W. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Program Decision Analysis Series, 1998, 12: 222. [99] Bastyan G R, Cambridge M L. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science, 2008, 79(2): 289-299. [100] Park J I, Lee K S. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Marine Pollution Bulletin, 2007, 54(8): 1238-1248. [101] Zhang P D, Zeng X, Sun Y, et al. Research progress in seagrass shoot trans planting method. Marine Sciences, 2013, 37(5): 100-107. [102] van Katwijk M M, Hermus D C R. Effect of water dynamics on Zostera marina: transplantation experiments in the intertidal Dutch Wadden Sea. Marine Ecology Progress Series, 2000, 208: 107-118. [103] Williams S L. Reduced genetic diversity in eelgrass transplantations affects both population growth and individual fitness. Ecological Applications, 2008, 11(5): 1472-1488. [104] Olsen J L, Stam W T, Coyer J A, et al. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Molecular Ecology, 2004, 13(7): 1923-1941. [105] Coyer J A, Diekmann O E, Serrao E A, et al. Population genetics of dwarf eelgrass Zostera noltii throughout its biogeographic range. Marine Ecology Progress Series, 2004, 281: 51-62. [106] Moore K A, Wetzel R L, Orth R J. Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. Journal of Experimental Marine Biology and Ecology, 1997, 215(1): 115-134. [107] Martins I, Neto J M, Fontes M G, et al. Seasonal variation in short-term survival of Zostera noltii transplants in a declining meadow in Portugal. Aquatic Botany, 2005, 82(2): 132-142. [108] Li W T, Kim S H, Kim J W, et al. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary. Estuarine, Coastal and Shelf Science, 2013, 118(1): 72-79. [109] Fonseca M S, Kenworthy W J, Courtney F X, et al. Seagrass planting in the southeastern United States: Methods for accelerating habitat development. Restoration Ecology, 1994, 2(2): 198-212. [110] Procaccini G, Olsen J L, Reusch T B H. Contribution of genetics and genomics to seagrass biology and conservation. Journal of Experimental Marine Biology and Ecology, 2007, 350(1/2): 234-259. [6] 杨宗岱. 中国海草植物地理学的研究. 海洋湖沼通报, 1979, (2): 41-46. [14] 杨宗岱. 中国海草的生态学研究. 海洋科学, 1982, (2): 34-37. [16] 郑凤英, 邱广龙, 范航清, 等. 中国海草的多样性、分布及保护. 生物多样性, 2013, 21(5): 517-526. [21] 范航清, 郑杏雯. 海草光合作用研究进展. 广西科学, 2007, 14(2): 180-192. [22] 李有观. 用海草制成的人造骨. 中国医疗设备, 1992, 18: 8. [26] 邱广龙, 林幸助, 李宗善, 等. 海草生态系统的固碳机理及贡献. 应用生态学报, 2014, 25(6): 1825-1832. [31] 李文涛, 张秀梅. 海草场的生态功能. 中国海洋大学学报, 2009, 39(5): 933-939. [50] 黄道建, 黄小平. 海草污染生态学研究进展. 海洋湖沼通报, 2007, 7(B12): 182-188. [53] 石秋池. 欧盟水框架指令及其执行情况. 中国水利, 2005, 22: 65-66. [69] 李森, 范航清, 邱广龙, 等. 海草床恢复研究进展. 生态学报, 2010, 30(9): 2443-2453. [70] 许战洲, 罗勇, 朱艾嘉, 等. 海草床生态系统的退化及其恢复. 生态学杂志, 2009, 28(12): 2613-2618. [86] 凌娟, 董俊德, 张燕英, 等. 海草床生态系统固氮微生物研究现状与展望. 生物学杂志, 2012, 29(3): 62-65. [90] 韩秋影, 施平. 海草生态学研究进展. 生态学报, 2008, 28(11): 5561-5570. [101] 张沛东, 曾星, 孙燕, 等. 海草植株移植方法的研究进展. 海洋科学, 2013, 37(5): 100-107. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||