[1] Maestre F T, Quero J L, Gotelli N J, et al . Plant species richness and ecosystem multifunctionality in global drylands. Science, 2012, 335: 214-218. [2] Delgado-Baquerizo M, Maestre F T, Gallardo A, et al . Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502: 672-676. [3] Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 2014, 65: 10-21. [4] Chen H Y, Chen Y N. Changes of desert riparian vegetation along the main stream of Tarim River, Xinjiang. Chinese Journal of Ecology, 2015, 34(11): 3166-3173. [5] Wang X Y, Xu H L, Pan C D, et al . The influence of groundwater depth on aboveground herbaceous characteristics in the lower reaches of Tarim River. Chinese Journal of Ecology, 2015, 34(11): 3057-3064. [6] Chen Y N, Li W H, Chen Y P, et al . Ecological response and ecological regeneration of transfusing stream water along the dried-up watercourse in the lower reaches of the Tarim River, Xinjiang. Arid Zone Research, 2006, 23(4): 521-530. [7] Fu J Y, Xu H L, Zhao X F, et al . Differences in the impacts of flooding frequency and duration on riparian vegetation and soil in the Lower Tarim River. Acta Prataculturae Sinica, 2013, 22(6): 11-20. [8] Yuan S F, Chen Y N, Li W H, et al . Analysis of the aboveground biomass and spatial distribution of shrubs in the lower reaches of Tarim River, Xinjiang, China. Acta Ecologica Sinica, 2006, 28(6): 1818-1824. [9] Zhu X C, Yuan G F, Shao M A, et al . Spatial pattern of riparian vegetation in desert of the lower Tarim River basin. Chinese Journal of Plant Ecology, 2015, 39(11): 1053-1061. [10] Zhou B, Yang H M, Hu S J, et al . Effect of river flooding on soil physical chemical properties and vegetation. Arid Land Geography, 2010, 33(3): 442-448. [11] Zhu J T, Li X Y, Zhang X M, et al . Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert. Chinese Journal of Plant Ecology, 2010, 34(9): 1025-1032. [12] Li C J, Li Y, Ma J, et al . Nutrition in the rhizosphere of five xerophytic plants. Arid Land Geography, 2011, 34(2): 222-228. [13] Zhou X B, Zhang Y M, Wang S S, et al . Combined effects of simulated nitrogen deposition and drought stress on growth and photo-synthetic physiological responses of two annual desert plants in Junggar Basin, China. Chinese Journal of Plant Ecology, 2010, 34(12): 1394-1403. [14] Kou J T, Shi S L, Hu G X, et al . Photosynthetic physiological response of Medicago sativa to Odontothrips loti damage. Acta Ecologica Sinica, 2014, 34(1): 143-150. [15] Li L, Zhou Z L, Lv R H, et al . Soil physical and chemical properties of desert riparian forest in different areas of the Tarim River. Journal of Northeast Forestry University, 2015, 43(11): 75-78, 87. [16] Zhang Y S, Wang L X, Zhang H Q, et al . Desertified soil characteristics and fractal feature in lower reaches of Tarim River. Resources Science, 2004, 26(5): 11-17. [17] Yin L, Hu T X, Liu Y A, et al . Effect of drought stress on photosynthetic characteristics and growth of Jatropha curcas seedlings under different nitrogen levels. Chinese Journal of Applied Ecology, 2010, 21(3): 569-576. [18] Liu D, Piao S L, Zheng X X, et al . Effects of drought stress and N rate on growth and physiological characters of flue-cured tobacco. Journal of Jilin Agricultural Sciences, 2008, 33(2): 29-31, 52. [19] Kang X Y, Chang C, Sun X P, et al . How nitrogen and drought stress affect growth and nitrogen use efficiency for Fuji and Qinguan apple seedlings. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 965-973. [20] Lin N, Liang Y, Yang Z D, et al . Effects of different nitrogen forms on the growth and physiological characteristics of Eucalyptus seedlings. Journal of Anhui Agricultural University, 2009, 37(4): 1423-1425. [21] Xu N, Zhang H H, Zhu W X, et al . Effects of nitrogen from on seedling growth and its photosynthetic characteristics of forage mulberry. Pratacultural Science, 2012, 29(10): 1574-1580. [22] Zhao M, Wang X W, Mao Z J. The effect of CO 2 concentration and temperature on chlorophyll content of Quercus mongolica Fisch under different nitrogen levels. Bulletin of Botanical Research, 2006, 22(3): 337-341. [23] Gao M Y, Ji X M, Jin K Y. Chlorophyll changes of Populus euphratica & Populus bolleana under different moisture conditions. Protection Forest Science and Technology, 2011, 2: 6-8. [24] Zhang X L, Zeng F J, Liu B, et al . Effects of different soil moisture treatments on the photosynthesis and dry matter accumulation of Alhagi sparsifolia seedlings. Arid Zone Research, 2010, 27(4): 649-655. [25] Wan H W, Yang Y, Bai S Q, et al . Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Chinese Journal of Plant Ecology, 2008, 32(3): 611-621. [26] Li X F. Effect of nitrogen addition on growth and photosynthetic physiological characteristics of Medicago sativa . Northern Horticulture, 2015, (2): 158-164. [27] Nakaji T, Fukami M, Dokiya Y, et al . Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Structure and Function, 2001, 15(8): 453-461. [28] Wang M H, Ma X D, Zhang R Q, et al . Response characteristics of chlorophyll fluorescence of Alhagi sparsifolia to different irrigation regimes in the extremely arid area. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1860-1868. [29] Zhu C G, Li W H, Ma X D, et al . Chlorophyll fluorescence characteristic of populous euphratica under drought stress in the lower reaches of Tarim River. Journal of Desert Research, 2011, 31(4): 927-936. [30] Zhang X C, Yu X F, Ma Y F. Effects of nitrogen application and elevated atmospheric CO 2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat. Chinese Journal of Applied Ecology, 2011, 22(3): 673-680. [31] Dong C X, Tian J C, Zhao S J. Effects of different nitrogen forms (NH 4 + , NO 3 - ) on the chlorophyll fluorescence in seedling leaves of high protein wheat cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 21-26. [32] Evans S E, Burke I C. Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 2013, 16(1): 20-33. [33] Jiang L L, Han L S, Han X R, et al . Effects of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings. Plant Nutrition and Fertilizer Science, 2011, 17(1): 247-253. [4] 陈海燕, 陈亚宁. 新疆塔里木河干流荒漠河岸林植被带变化. 生态学杂志, 2015, 34(11): 3166-3173. [5] 王希义, 徐海量, 潘存德, 等. 塔里木河下游地下水埋深对草本植物地上特征的影响. 生态学杂志, 2015, 34(11): 3057-3064. [6] 陈亚宁, 李卫红, 陈亚鹏, 等. 塔里木河下游断流河道输水的生态响应与生态修复. 干旱区研究, 2006, 23(4): 521-530. [7] 傅荩仪, 徐海量, 赵新风, 等. 塔里木河下游漫溢干扰频次和持续时间对河岸植被和土壤的影响差异. 草业学报, 2013, 22(6): 11-20. [8] 袁素芬, 陈亚宁, 李卫红, 等. 新疆塔里木河下游灌丛地上生物量及其空间分布. 生态学报, 2006, 28(6): 1818-1824. [9] 朱绪超, 袁国富, 邵明安, 等. 塔里木河下游河岸带植被的空间结构特征. 植物生态学报, 2015, 39(11): 1053-1061. [10] 周斌, 杨红梅, 胡顺军, 等. 河水漫溢对塔里木河下游土壤及植被的影响. 干旱区地理, 2010, 33(3): 442-448. [11] 朱军涛, 李向义, 张希明, 等. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配. 植物生态学报, 2010, 34(9): 1025-1032. [12] 李从娟, 李彦, 马健, 等. 干旱区植物根际土壤养分状况的对比研究. 干旱区地理, 2011, 34(2): 222-228. [13] 周晓兵, 张元明, 王莎莎, 等. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 2010, 34(12): 1394-1403. [14] 寇江涛, 师尚礼, 胡桂馨, 等. 紫花苜蓿对牛角花齿蓟马为害的光合生理响应. 生态学报, 2014, 34(1): 143-150. [15] 李荔, 周正立, 吕瑞恒, 等. 塔里木河流域荒漠河岸林土壤理化性质. 东北林业大学学报, 2015, 43(11): 75-78, 87. [16] 章予舒, 王立新, 张红旗, 等. 塔里木河下游沙漠化土壤性质及分形特征. 资源科学, 2004, 26(5): 11-17. [17] 尹丽, 胡庭兴, 刘永安, 等. 干旱胁迫对不同施氮水平麻疯树幼苗光合特性及生长的影响. 应用生态学报, 2010, 21(3): 569-576. [18] 刘丹, 朴世领, 郑仙霞, 等. 干旱胁迫下氮对烤烟生长及生理特性的影响. 吉林农业科学, 2008, 33(2): 29-31, 52. [19] 康晓育, 常聪, 孙协平, 等. 低氮和干旱胁迫对富士和秦冠生长及氮素利用的影响. 植物营养与肥料学报, 2014, 20(4): 965-973. [20] 林宁, 梁莹, 杨振德, 等. 不同氮素形态对桉树幼苗生长及某些生理特性的影响. 安徽农业科学, 2009, 37(4): 1423-1425. [21] 许楠, 张会慧, 朱文旭, 等. 氮素形态对饲料桑树幼苗生长和光合特性的影响. 草业科学, 2012, 29(10): 1574-1580. [22] 赵甍, 王秀伟, 毛子军. 不同氮素浓度下CO 2 浓度、温度对蒙古栎( Quercus mongolica )幼苗叶绿素含量的影响. 植物研究, 2006, 26(3): 337-341. [23] 高明月, 吉小敏, 靳开颜. 不同水分条件下胡杨和新疆杨苗期叶绿素变化. 防护林科技, 2011, 2: 6-8. [24] 张晓蕾, 曾凡江, 刘波, 等. 不同土壤水分处理对疏叶骆驼刺幼苗光合特性及干物质积累的影响. 干旱区研究, 2010, 27(4): 649-655. [25] 万宏伟, 杨阳, 白世勤, 等. 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 2008, 32(3): 611-621. [26] 李雪芬. 氮添加对紫花苜蓿生长特性及光合生理特性的影响. 北方园艺, 2015, (2): 158-164. [28] 王明慧, 马晓东, 张瑞群, 等. 极端干旱区疏叶骆驼刺叶绿素荧光对人工水分干扰的响应特征. 西北植物学报, 2014, 34(9): 1860-1868. [29] 朱成刚, 李卫红, 马晓东, 等. 塔里木河下游干旱胁迫下的胡杨叶绿素荧光特性研究. 中国沙漠, 2011, 31(4): 927-936. [30] 张绪成, 于显枫, 马一凡. 施氮和大气CO 2 浓度升高对小麦旗叶光合电子传递和分配的影响. 应用生态学报, 2011, 22(3): 673-680. [31] 董彩霞, 田纪春, 赵世杰. 不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响. 西北植物学报, 2002, 22(2): 21-26. [33] 姜琳琳, 韩立思, 韩晓日, 等. 氮素对玉米幼苗生长、根系形态及氮素效率的影响. 植物营养与肥料学报, 2011, 17(1): 247-253. |