[1] He J Z, Zhang L M. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle. Acta Ecologica Sinica, 2009, 29(1): 406-415. 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展. 生态学报, 2009, 29(1): 406-415. [2] He J Z, Zhang L M. Key processes and microbial mechanisms of soil nitrogen transformation. Microbiology China, 2013, 40(1): 98-108. 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制. 微生物学通报, 2013, 40(1): 98-108. [3] Wang B, Zhao J, Guo Z, et al . Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. The ISME Journal, 2015, 9: 1062-1075. [4] Lan T, Han Y, Roelcke M, et al . Sources of nitrous and nitric oxides in paddy soils: Nitrification and denitrification. Journal of Environmental Sciences, 2014, 26: 581-592. [5] Gu Y F, Zhang X P, Tu S H, et al . Effect of long-term fertilization on nitrification and nitrobacteria community in a purple paddy soil under rice-wheat rotations. Acta Ecologica Sinica, 2008, 28(5): 2123-2130. 辜运富, 张小平, 涂仕华, 等. 长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响. 生态学报, 2008, 28(5): 2123-2130. [6] Schinner F, Öhlinger R, Kandeler E, et al . Methods in Soil Biology[M]. Berlin: Springer Verlag, 1996. [7] Lu R K. Analytical Methods for Soil and Agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [8] Shi Y F, Zhang L L, Zhao M Q, et al . Improved method of measuring soil nitrification activities. China Agricultural Science Bulletin, 2014, 30(33): 225-229. 史云峰, 张丽莉, 赵牧秋, 等. 土壤硝化强度测定方法的改进. 中国农学通报, 2014, 30(33): 225-229. [9] Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Review of Microbiology, 2001, 55: 485-592. [10] Leininger S, Urich T, Schloter M, et al . Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006, 442: 806-809. [11] Pan F X, Lu J W, Liu W, et al . Effect of different green manure application on soil fertility. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1359-1364. 潘福霞, 鲁剑巍, 刘威, 等. 不同种类绿肥翻压对土壤肥力的影响. 植物营养与肥料学报, 2011, 17(6): 1359-1364. [12] Zhou X, Li Z M, Xie J, et al . Effect of reducing chemical fertilizer on rice yield, output value, content of soil carbon and nitrogen after utilizing the milk vetch. Journal of Hunan Agricultural University: Natural Sciences, 2014, 40(3): 225-230. 周兴, 李再明, 谢坚, 等. 紫云英利用后减施化肥对水稻产量和产值及土壤碳氮含量的影响. 湖南农业大学学报: 自然科学版, 2014, 40(3): 225-230. [13] Liu C Z, Li B Y, Lv Y H, et al . Effect of incorporation of Astragalus sinicus on soil fertility, rice yield and economic efficiency. Journal of Henan Agricultural Sciences, 2011, 40(5): 96-99. 刘春增, 李本银, 吕玉虎, 等. 紫云英还田对土壤肥力、水稻产量及其经济效益的影响. 河南农业科学, 2011, 40(5): 96-99. [14] Zhang J T, Cao W D, Xu C X, et al . Effects of incorporation of milk vetch ( Astragalus sinicus ) on microbial populations and enzyme activities of paddy soil in Jiangxi. Soil and Fertilizer Sciences, 2012, (1): 19-25. 张珺穜, 曹卫东, 徐昌旭, 等. 种植利用紫云英对稻田土壤微生物及酶活性的影响. 中国土壤与肥料, 2012, (1): 19-25. [15] Francis C A, Roberts K J, Beman J M, et al . Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 14683-14688. [16] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker, molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied Environmental Microbiology, 1997, 63: 4704-4712. [17] Meng H Q, Lü J L, Xü M G, et al . Alkalinity of organic manure and its mechanism for mitigating soil acidification. Plant Nutrition and Fertilizer Science, 2012, 18(5): 1159-1167. 孟红旗, 吕家珑, 徐明岗, 等. 有机肥的碱度及其减缓土壤酸化的机制. 植物营养与肥料学报, 2012, 18(5): 1159-1167. [18] Chen L, Zhang M L, Li J D, et al . Study on buffering action of several soil types on alkali and its influencing factors. Journal of Agriculture, 2015, 5(11): 40-43. 陈龙, 张美玲, 李建东, 等. 几种类型土壤对碱的缓冲作用及其影响因素研究. 农学学报, 2015, 5(11): 40-43. [19] Gao S J, Zhang R G, Cao W D, et al . Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture, 2015, 14: 2512-2520. [20] Ye X, Liu H, Li Z, et al . Effects of green manure continuous application on soil microbial biomass and enzyme activity. Journal of Plant Nutrition, 2014, 37: 498-508. [21] Wan S X, Tang S, Jiang G Y, et al . Effects of Chinese milk vetch manure and fertilizer on soil microbial characteristics and yield of rice. Acta Prataculturae Sinica, 2016, 25(6): 109-117. 万水霞, 唐杉, 蒋光月, 等. 紫云英与化肥配施对土壤微生物特征和作物产量的影响. 草业学报, 2016, 25(6): 109-117. [22] Xie Z J, Xu C X, Xu Z L, et al . Effects of applying mineral fertilizer reasonably on the availability of soil nutrient and yields of rice under applying equivalent green manure. Soil and Fertilizer Sciences, 2011, (4): 79-82. 谢志坚, 徐昌旭, 许政良, 等. 翻压等量紫云英条件下不同化肥用量对土壤养分有效性及水稻产量的影响. 中国土壤与肥料, 2011, (4): 79-82. [23] Zhu C M, Li Z F, Wu W L, et al . Carbon and nitrogen mineralization of incubated sweet maize and white clover straw. Chinese Journal of Eco-Agriculture, 2009, 17(3): 423-428. 朱春茂, 李志芳, 吴文良, 等. 甜玉米/白三叶草秸秆还田的碳氮矿化研究. 中国生态农业学报, 2009, 17(3): 423-428. [24] Gao J S, Cao W D, Li D C, et al . Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field. Acta Ecologica Sinica, 2011, 31(16): 4542-4548. 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响. 生态学报, 2011, 31(16): 4542-4548. [25] Anthonisen A C, Loehr R C, Prakasam T B S, et al . Inhibition of nitrification by ammonia and nitrous acid. Water Pollution Control Federation, 1976, 48: 835-852. [26] Vitousek P M, Gosz J R, Grier C C, et al . A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecological Monographs, 1982, 52: 155-177. [27] Robertson G P. Nitrification in forested ecosystems. Philosophical Transactions of the Royal Society of London, 1982, 296: 445-457. [28] Chu H, Fujii T, Morimoto S, et al . Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. Soil Biology and Biochemistry, 2008, 40: 1960-1963. [29] Qin Z X, Zhang Y T, Zhou Z F, et al . Characteristics of mineralization and nitrification in neutral purple paddy soil from a long-term fertilization experiment. Scientia Agricultura Sinica, 2013, 46(16): 3392-3400. 秦子娴, 张宇亭, 周志峰, 等. 长期施肥对中性水稻土氮素矿化和硝化作用的影响. 中国农业科学, 2013, 46(16): 3392-3400. [30] Wang F, Chen Y Z, You Z M, et al . Effects of different nitrogen application rates on nitrification and pH of two tea garden soil. Journal of Tea Science, 2015, 35(1): 82-90. 王峰, 陈玉真, 尤志明, 等. 不同施氮量对两种茶园土壤硝化作用和pH值的影响. 茶叶科学, 2015, 35(1): 82-90. [31] Ai C, Liang G, Sun J, et al . Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biology and Biochemistry, 2013, 57: 30-42. [32] Rudisill M A, Turco R F, Hoagland L A. Fertility practices and rhizosphere effects alter ammonia oxidizer community structure and potential nitrification activity in pepper production soils. Applied Soil Ecology, 2016, 99: 70-77. [33] Baolan H, Shuai L, Wei W, et al . pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils. FEMS Microbiology Ecology, 2014, 90: 290-299. [34] Huang L, Dong H, Wang S, et al . Diversity and abundance of ammonia-oxidizing archaea and bacteria in diverse Chinese Paddy Soils. Geomicrobiology Journal, 2014, 31: 12-22. [35] Ouyang Y, Norton J M, Stark J M, et al . Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biology and Biochemistry, 2016, 96: 4-15. [36] Zeglin L H, Taylor A E, Myrold D D, et al . Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses. Environmental Microbiology Reports, 2011, 3: 717-726. [37] Fan X H, Zhu Z L. Nitrification and denitrification in upland soils. Chinese Journal of Soil Science, 2002, 33(5): 385-391. 范晓晖, 朱兆良. 旱地土壤中的硝化—反硝化作用. 土壤通报, 2002, 33(5): 385-391. [38] Fan X H, Sun Y H, Lin D X, et al . The characteristics of mineralization and nitrification in red soil and calcareous soil from long term fertilization experiments. Chinese Journal of Soil Science, 2005, 36(5): 672-674. 范晓晖, 孙永红, 林德喜, 等. 长期试验地红壤与潮土的矿化和硝化作用特征比较. 土壤通报, 2005, 36(5): 672-674. [39] Li L M, Pan Y H, Zhou X R, et al . The effect factors and nitrification of the mainly soil types in the Tai Lake region (In Chinese). Soils, 1987, 19(6): 289-293. 李良谟, 潘映华, 周秀如, 等. 太湖地区主要类型土壤的硝化作用及其影响因素. 土壤, 1987, 19(6): 289-293. [40] Che J, Zhao X Q, Zhou X, et al . High pH-enhanced soil nitrification was associated with ammonia-oxidizing bacteria rather than archaea in acidic soils. Applied Soil Ecology, 2015, 85: 21-29. [41] Hu H W, Zhang L M, Dai Y, et al . pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. Journal of Soils and Sediments, 2013, 13: 1439-1449. [42] Liu R, Suter H, He J, et al . Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. Journal of Soils and Sediments, 2015, 15: 2304-2309. [43] Cai Z C, Zhao W. Effects of land use types on nitrification in humid subtropical soils of China. Acta Pedologica Sinica, 2009, 46(5): 795-801. 蔡祖聪, 赵维. 土地利用方式对湿润亚热带土壤硝化作用的影响. 土壤学报, 2009, 46(5): 795-801. |