[1] Huang Y Z, Hao X W, Lei M, et al . The remediation technology and remediation practice of heavy metals-contaminated soil. Journal of Agro-Environment Science, 2013, 32(3): 409-417. 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践. 农业环境科学学报, 2013, 32(3): 409-417. [2] Xue Y, Wang Y Y, Yao Q H, et al . Research progress of plants resistance to heavy metal Cd in soil. Ecology and Environmental Sciences, 2014, 23(3): 528-534. 薛永, 王苑螈, 姚泉洪, 等. 植物对土壤重金属镉抗性的研究进展. 生态环境学报, 2014, 23(3): 528-534. [3] Singh A, Prasad S M. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. International Journal of Environmental Science and Technology, 2015, 12(1): 353-366. [4] Chen C X, Lu Z Q, Zheng W J. The growth and ecophysiological responses of mangrove Avicennia marina seedlings to cadmium. Journal of Xiamen University: Natural Science Edition, 2015, 54(4): 485-492. 陈昌徐, 陆志强, 郑文教. 白骨壤幼苗对镉胁迫的生长及生理生态响应. 厦门大学学报: 自然科学版, 2015, 54(4): 485-492. [5] Zhang W E, Xue J, Li H. Growth and photosynthetic characteristics of Canna generalis under Cd stress. Guizhou Agricultural Sciences, 2015, 43(3): 31-36. 张文娥, 学军, 李慧. 镉胁迫大花美人蕉的生长及光合特性. 贵州农业科学, 2015, 43(3): 31-36. [6] Wang J, Zhang X, Chen S H, et al . Physiological responses of reed seedlings to NaCl stress and Cd stress. Jiangsu Agricultural Sciences, 2015, 43(3): 327-329. 王静, 张侠, 陈世华, 等. 芦苇幼苗对NaCl胁迫和镉胁迫的生理响应. 江苏农业科学, 2015, 43(3): 327-329. [7] Zhao X F. Effects and Physiological Mechanisms of Nitric Oxide on Alleviating Cadmium Toxicity in Rice Seedlings[D]. Nanjing: Nanjing Agricultural University, 2012. 赵秀峰. 一氧化氮对水稻幼苗镉毒害的缓解效应及其生理机制[D]. 南京: 南京农业大学, 2012. [8] Mebarg A A. The role of the plasmalemma in metal tolerance in angiosperms. Physoilogia Plantarum, 1993, 88: 191-198. [9] Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheatⅡ.Oxalic acid detoxifies aluminum internally. Plant Physiology, 1998, 117: 753-759. [10] Sanitadi Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental & Experimental Botany, 1999, 41: 105-130. [11] Barceló J, Poschenrieder C. Phytoremediation: principles and perspectives. Contributions to Science, 2003, 2(3): 333-334. [12] Zhou Q X, Wei S H, Zhang Q R. Ecological Restoration[M]. Beijing: China Environmental Science Press, 2006. 周启星, 魏树和, 张倩茹. 生态修复[M]. 北京: 中国环境科学出版社, 2006. [13] Sun T H, Li P J, Zhou Q X. Soil Pollution Formation Mechanism and Remediation Technology[M]. Beijing: Science Press, 2005. 孙铁珩, 李培军, 周启星. 土壤污染形成机理与修复技术[M]. 北京: 科学出版社, 2005. [14] Zhou Q X, Song Y F. Principles and Methods of Remediation of Contaminated Soils[M]. Beijing: Science Press, 2004. 周启星, 宋玉芳. 污染土壤修复原理与方法[M]. 北京: 科学出版社, 2004. [15] Wei H D, Li Y, Chen Z L, et al . Effects of nitrogen fertilizer on photosynthesis and chlorophyll fluorescence characteristics of Zoysia japonica in Cd stress. Soil and Fertilizer in China, 2015, (4): 88-92. 魏花朵, 李悦, 陈忠林, 等. 氮肥对镉胁迫下结缕草光合和叶绿素荧光特性的影响. 中国土壤与肥料, 2015, (4): 88-92. [16] Xu C. Effects of Nitrogen Application on Growth and Photosynthesis of Zizania latifolia [D]. Hangzhou: Zhejiang University, 2011. 徐蝉. 氮肥对菱白生长及光合特性的影响[D]. 杭州: 浙江大学, 2011. [17] Zhao T H, Liu Y L, Cao Y, et al . Effects of nitrogen forms on nitrogen matter of spring wheat plant under cadmium. Journal of Agricultural Science, 2010, 25(5): 177-181. 赵天宏, 刘玉莲, 曹莹, 等. 镉胁迫下不同形态氮肥对春小麦体内含氮物质的影响. 华北农学报, 2010, 25(5): 177-181. [18] Zhang Y Y, Dou C Y, Yao F, et al . Nitrogen application to enhance zinc and cadmium uptake by the hyper accumulator Sedum alfredii . Journal of Zhejiang Forestry University, 2010, 27(6): 831-838. 张圆圆, 窦春英, 姚芳, 等. 氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响. 浙江林学院学报, 2010, 27(6): 831-838. [19] Liu S L, Shi X S, Pan Y Z, et al . Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus . Acta Prataculturae Sinica, 2013, 22(3): 154-161. 刘柿良, 石新生, 潘远智, 等. 镉胁迫对长春花生长, 生物量及养分积累与分配的影响. 草业学报, 2013, 22(3): 154-161. [20] Liu S L, Pan Y Z, Yang R J, et al . Effects of exogenous NO on mineral nutrition absorption, lipid peroxidation and ATPase of plasma membrane in Catharanthus roseus tissues under cadmium stress.Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 445-458. 刘柿良, 潘远智, 杨容孑, 等. 外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPase 及矿质营养吸收的影响. 植物营养与肥料学报, 2014, 20(2): 445-458. [21] Lu S L, Yang R J, Ma M D, et al . Effects of cadmium stress on growth, cadmium content and nutrient distribution of Trifolium repens L. Journal of Nuclear Agricultural Science, 2015, 29(3): 595-604. 刘柿良, 杨容孑, 马明东, 等. 镉胁迫对白车轴草生长、镉含量及养分分配的影响. 核农学报, 2015, 29(3): 595-604. [22] Qi S Y, Chang E Z, Dong J J, et al . Competitive effect between invasive plant Galinsoga parviflora and Trifolium repens . Guangdong Agricultural Sciences, 2014, (1): 141-145. 齐淑艳, 昌恩梓, 董晶晶, 等. 入侵植物牛膝菊与白车轴草的竞争效应. 广东农业科学, 2014, (1): 141-145. [23] De Lespinay A, Lequeux H, Lambillotte B, et al . Protein synthesis is differentially required for germination in Poa pratensis and Trifolium repens in the absence or in the presence of cadmium. Journal of Plant Growth Regulation, 2010, 61(2): 205-214. [24] Xiong Q E. Experimental Course in Plant Physiology[M]. Chengdu: Sichuan Science and Technology Press, 2003. 熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003. [25] Hissin P J, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry, 1976, 74: 214-226. [26] Rama D S, Prasad M N V. Copper toxicity in Ceratophyllum demersum L.(Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Science, 1998, 138: 157-165. [27] Hao J J, Kang Z L, Yu Y. Plant Physiology Experiment Technology[M]. Beijing: Chemical Industry Press, 2007. 郝建军, 康宗利, 于洋. 植物生理学实验技术[M]. 北京: 化学工业出版社, 2007. [28] Bhargava P, Srivastava A K, Urmil S. Phytochelatin plays a role in UV-B tolerance in N 2 -fixing cyanobacterium Anabaena doliolum . Journal of Plant Physiology, 2005, 162: 1220-1225. [29] Sun Z G. Study on the response to soil cadmium pollution and its remediation effect of Solanum nigrum L. Jiangsu Agricultural Sciences, 2015, (10): 397-401. 孙正国. 龙葵对镉污染土壤的响应及其修复效应研究. 江苏农业科学, 2015, (10): 397-401. [30] Cai Y, Cao F, Cheng W. Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biological Trace Element Research, 2011, 143(2): 1159-1173. [31] Wang J, Shen L B, Li Z, et al . Effects of nitrogen forms on growth and Zn/Cd uptake of Sedum plumbizincicola . Journal of Agro-Environment Science, 2014, 33(11): 2118-2124. 汪洁, 沈丽波, 李柱, 等. 氮肥形态对伴矿景天生长和锌镉吸收性的影响研究. 农业环境科学学报, 2014, 33(11): 2118-2124. [32] Sun N X, Song G L. Physiological response of Medicago sativa to cadmium stress and accumulation property. Pratacultural Science, 2015, 32(4): 581-585. 孙宁骁, 宋桂龙. 紫花苜蓿对镉胁迫的生理响应及积累特性. 草业科学, 2015, 32(4): 581-585. [33] Feng Q, Tai P D, Fu S S, et al . The role of thiol pool in cadmium detoxification in marigold plants. Chinese Journal of Environmental Engineering, 2010, 4(1): 214-218. 冯倩, 台培东, 付莎莎, 等. 巯基化合物在万寿菊镉解毒中的作用. 环境工程学报, 2010, 4(1): 214-218. [34] Zhong H, Zhang H, Xu H P. Progress on determination of glutathione. Amino Acids and Biological Resources, 2014, 36(1): 23-26. 钟华, 张慧, 许海平. 谷胱甘肽的测定方法进展. 氨基酸和生物资源, 2014, 36(1): 23-26. [35] Song Z T, Jiang N, Zhang A Z. Research progress on biological function of glutathione. Feed Research, 2008, (9): 25-28. 宋增廷, 姜宁, 张爱忠. 谷胱甘肽生物学功能的研究进展. 饲料研究, 2008, (9): 25-28. [36] Jones D P. Redefining oxidative stress. Antioxidants & Redox Signaling, 2006, 8(9/10): 1865-1879. [37] Wang W W, Tang L, Zhou W L, et al . Research progress of glutathione biosynthesis and metabolism related enzymes. China Biotechnology, 2014, 34(7): 89-95. 王玮玮, 唐亮, 周文龙, 等. 谷胱甘肽生物合成及代谢相关酶的研究进展. 中国生物工程杂志, 2014, 34(7): 89-95. [38] Cai B S, Lei M, Chen T B, et al . Phytochelatins and their roles in phyto-tolerance to heavy metals: A review. Acta Ecologica Sinica, 2003, 23(10): 2125-2132. 蔡保松, 雷梅, 陈同斌, 等. 植物螯合肽及其在抗重金属胁迫中的作用. 生态学报, 2003, 23(10): 2125-2132. [39] Xu Z L, Wu Q T, Yi Y L. Advanced progress of phytochelatins in plant. Agro-environmental Protection, 2001, 20(6): 468-470. 徐照丽, 吴启堂, 依艳丽. 重金属植物螯合肽(PC)的研究进展. 农业环境保护, 2001, 20(6): 468-470. [40] Li Z Y, Fan X Y, Song Z G, et al . Effects of elevated CO 2 on Cu uptake, root morphology and phytochelatins synthesis in different rice varieties. Journal of Soil and Water Conservation, 2013, 27(4): 207-216. 李中阳, 樊向阳, 宋正国, 等. CO 2 浓度升高对2个品种水稻Cu吸收、根形态和植物络合素合成的影响. 水土保持学报, 2013, 27(4): 207-216. [41] Klapheck, Fliegner W, Zimmer I. Hydroxymethyl-phytochelatins [(γ-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiology, 1994, 104: 1302-1325. [42] Jackon P J, Delhaize E, Kuske C R. Biosynthesis and metabolic roles of cadystins (γ-EC)n G and their precursors in Datura innoxia . Plant and Soil, 1992, 146: 281-289. [43] Zhang F, Wan X, Zhong Y. Nitrogen as an important detoxification factor to cadmium stress in poplar plants. Journal of Plant Interactions, 2013, 9(1): 249-258. [44] Huang C N, Lu X P, Xiao Y M, et al . Effect of nitrogen application on expression of key enzyme genes in pathway of Ponkan leaf nitrogen assimilation and chlorophyll biosynthesis. Journal of Fruit Science, 2014, (1): 7-12. 黄成能, 卢晓鹏, 肖玉明, 等. 施氮对椪柑叶片氮同化叶绿素合成关键酶基因表达的影响. 果树学报, 2014, (1): 7-12. [45] Wang J S. Basic Biochemistry[M]. Beijing: China Forestry Publishing House, 2006. 王金胜. 基础生物化学[M]. 北京: 中国林业出版社, 2006. [46] Polle A, Schützendübel A. Heavy Metal Signalling in Plants: Linking Cellular and Organismic Responses[M]. Berlin: Springer-Verlag, 2004: 184-216. [47] Nathalie V, Christian H, Henk S. Mechanisms to cope with arsenic or cadmium excess in plants. Current Opinion in Plant Biology, 2009, 12: 1-9. [48] Lu H Y, Liu Z H, Lv G H. Study on the content of MDA, proline and SOD protective enzymes in reed leaves under Cd pollution. Journal of Arid Land Resources and Environment, 2013, 27(8): 171-175. 路海燕, 刘志辉, 吕光辉. 镉污染下芦苇叶片丙二醛、脯氨酸及SOD保护酶反应研究. 干旱区资源与环境, 2013, 27(8): 171-175. [49] Bai R X, Xu S N, Chen Z L. Effects of nitrogen fertilizer on growth and physiological characteristics of Zoysia japonica under cadmium stress. Jiangsu Agricultural Sciences, 2016, 44(7): 245-247. 白瑞霞, 徐苏男, 陈忠林. 氮肥对镉(Cd)胁迫下结缕草生长和生理特性的影响. 江苏农业科学, 2016, 44(7): 245-247. [50] Zhai J. The Effects of Nitrogen on Poplar Growth and Chlorophyll Synthesis under Cadmium Stress[D]. Ya’an: Sichuan Agricultural Uniersity, 2013. 翟晶. 镉胁迫下增施氮对杨树生长和叶绿素合成的影响[D]. 雅安: 四川农业大学, 2013. [51] Gutiérrez-Gamboa G, Garde-Cerdán T, Gonzalo-Diago A, et al . Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. LWT-Food Science and Technology, 2017, 75: 147-154. |