[1] Gu A X, Fan Y M, Wu H Q, et al . Relationship between the number of three main microorganisms and the soil environment of degraded grassland on the north slope of the Tianshan Mountains. Acta Prataculturae Sinica, 2010, 19(2): 116-123. 顾爱星, 范燕敏, 武红旗, 等. 天山北坡退化草地土壤环境与微生物数量的关系. 草业学报, 2010, 19(2): 116-123. [2] Ai N·Ku E B. About the controlling policy on the deteriorated grassland in Xinjiang. Xinjiang Stockbreeding, 2006, (2): 62-64. 艾尼·库尔班. 我区退化草地的治理措施. 新疆畜牧业, 2006, (2): 62-64. [3] Ma P, Li Z Z. Analysis on the variation of agro-ecosystem service value at Qapqal County of Ili City, Uygur Autonomous Region. Subtropical Soil and Water Conservation, 2010, 22(4): 31-35. 马鹏, 李志忠. 新疆伊犁察布查尔县农业生态系统服务价值变化分析. 亚热带水土保持, 2010, 22(4): 31-35. [4] Jenkinson D S. Determination of microbial biomass carbon and nitrogen in soil[C]//Wilson J R. Advances in Nitrogen Cycling in Agricultural Ecosystems. Wallingford, England: CAB International, 1988: 368-386. [5] Yu S, Li Z G. Research progress on soil micro-biomass by fumigation-extraction method. Progress in Soil Science, 1994, 22(6): 42-50. 俞慎, 李振高. 熏蒸提取法测定土壤微生物量研究进展. 土壤学进展, 1994, 22(6): 42-50. [6] Cao H, Yang H, Sun B, et al . Changing characters of micro-biomass and enzyme activities of vegetable soil under different planting time. Soils, 2002, 34(4): 197-200. 曹慧, 杨浩, 孙波, 等. 不同种植时间菜园土壤微生物生物量和酶活性变化特征. 土壤, 2002, 34(4): 197-200. [7] Henrot K, Robertson G P. Vegetation removal in two soils of the humid tropics: effect on microbial biomass. Soil Biology and Biochemistry, 1994, 26: 111-116. [8] Khan K S. Effects of Cadmium, Lead and Zinc Pollution on Microbial Biomass in Red Soil[D]. Hangzhou: Zhejiang Agricultural University, 1998. Khan K S. 钙化和锌污染红壤当中的微生物量[D]. 杭州: 浙江农业大学, 1998. [9] Nielsen N M, Winding A. Microorganisms as Indictors of Soil Health[R]. Denmark: National Environment Research Institute, 2002: 11-37. [10] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75-86. [11] Somova L A, Pechurkin N S. Functional regulatory and indictor features of microorganisms in man-made ecosystems. Advanced in Space Research, 2001, 27(9): 1563-1570. [12] Roy S, Sigh J S. Consequences of habit heterogeneity for availability of nutrients in a dry tropical forest. Journal of Ecology, 1994, 82: 503-509. [13] Brookes P C, Andrea L, Pruden G, et al . Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology Biochemistry, 1985, 12(6): 837-842. [14] Wen Q, Zhao X R, Tuo D B, et al . The distribution characteristics of microbial biomass nitrogen in different soil aggregate in semi-arid area. Scientia Agricultura Sinica, 2005, 38(1): 91-95. 文倩, 赵小蓉, 妥德宝, 等. 半干旱地区不同土壤团聚体中微生物量氮的分布特征. 中国农业科学, 2005, 38(1): 91-95. [15] Zhang N L, Guo J X. Research on soil microbial biomass phosphorus in a Carex duriuscula community of Songnen meadow. Acta Prataculturae Sinica, 2006, 15(5): 19-24. 张乃莉, 郭继勋. 松嫩草甸寸草苔群落土壤微生物量磷的初步研究. 草业学报, 2006, 15(5): 19-24. [16] Bao S D. Soil and Plant Analysis[M]. Beijing: Agricultural Press of China, 1999. 鲍士旦. 农化分析[M]. 北京: 中国农业出版社, 1999. [17] Lin Q M, Wu Y G, Liu H L. Modification of fumigation extraction method for measuring soil microbial biomass carbon. Chinese Journal of Ecology, 1999, 18(2): 63-66. 林启美, 吴玉光, 刘焕龙. 熏蒸法测定土壤微生物量碳的改进. 生态学杂志, 1999, 18(2): 63-66. [18] Wu J S, Lin Q M, Huang Q Y, et al . Measuring Methods of Soil Microbial Biomass and Its Application[M]. Beijing: Press of Meteorology, 2006: 71-74. 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006: 71-74. [19] Wang L L, Dong M, Zhang L, et al . Effects of organic manures with different carbon-to-nitrogen ratios on soil microbial biomass of organic agriculture. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1073-1077. 王利利, 董民, 张璐, 等. 不同碳氮比有机肥对有机农业土壤微生物生物量的影响. 中国生态农业学报, 2013, 21(9): 1073-1077. [20] Peng X Q, Wang W. Spatial pattern of soil microbial biomass carbon and its driver intemperate grasslands of Inner Mongolia. Microbiology China, 2016, 43(9): 1981-1930. 彭晓茜, 王娓. 内蒙古温带草原土壤微生物生物量碳的空间分布及驱动因素. 微生物学通报, 2016, 43(9): 1918-1930. [21] Sheng H, Zhou P, Yuan H, et al . Profile of soil microbial biomass carbon in different types of subtropical paddy soils. Environmental Science, 2013, 34(4): 1576-1582. 盛浩, 周萍, 袁红, 等. 亚热带不同稻田土壤微生物生物量碳的剖面分布特征. 环境科学, 2013, 34(4): 1576-1582. [22] Cai S, Hu X, Wang Z Y. Response of soil microbial biomass to altitude gradient in Mount Emei. Southern Agriculture, 2016, 10(9): 248-250. 蔡霜, 胡霞, 王智勇. 峨眉山土壤微生物生物量对海拔梯度的响应. 南方农业, 2016, 10(9): 248-250. [23] Hu Z D, Liu S R, Shi Z M, et al . Variations of soil nitrogen and microbial biomass carbon and nitrogen of Quercus aquifolioides forest at different attitudes in Balangshan, Sichuan. Scientia Silvae Sinicae, 2012, 25(3): 261-268. 胡宗达, 刘世荣, 史作民, 等. 川滇高山栎林土壤氮素和微生物量碳氮随海拔变化的特征. 林业科学研究, 2012, 25(3): 261-268. [24] Zang Y F, Hao M D, Zhang L Q, et al . Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5): 1445-1451. 臧逸飞, 郝明德, 张丽琼, 等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5): 1445-1451. [25] Wang N, Yang X, Li S L, et al . Seasonal dynamics of soil microbial biomass carbon-nitrogen in the korean pine mixed forests along elevation gradient. Scientia Silvae Sinicae, 2016, 52(1): 150-158. 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态. 林业科学, 2016, 52(1): 150-158. [26] Cao R, Wu F Z, Yang W Q, et al . Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 2016, 27(4): 1257-1264. 曹瑞, 吴福忠, 杨万勤, 等. 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 2016, 27(4): 1257-1264. |